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UNIT 1:   DEFINITION OF MATHEMATICS 

 

Learners, consumers, and practitioners are introduced to the nature of mathematics as a reality, 

an abstract discipline, a creation or discovery of the human mind, and an art or science in this 

lesson. It talks about certain mathematical definitions. The lesson provides insight into the 

problem-solving approaches of George Polya and John Mason as well as what "doing 

mathematics" actually entails. You will learn about the nature of mathematics as a fact, as an 

abstract discipline, as a creation or discovery of the human mind, or as a science in this unit. It 

talks about certain mathematical definitions. The lesson also reveals the true nature of "doing 

mathematics" and the approach taken by George Polya and John Mason to solve problems. 

 

Learning objective(s) 

The participant will be able to:  

1. explain the definitions of mathematics;  

2. explain the key similarities and differences between mathematics and science. 

3. specify the elements of the cycle of mathematical investigations and explain them. 

4. justify the notion that mathematics is a discovery or an invention. 

 

SESSION 1: WHAT IS MATHEMATICS? 

We will explain the definitions of mathematics in this session, as well as the difference between 

abstract and real mathematics. By the end of the session, it is hoped that you will have a better 

knowledge of what mathematics is all about. 

 

Learning outcomes 

By the end of the session, the participant will be able to explain:  

1. definitions of mathematics; and  

2. if mathematics is real or abstract. 

 

WHAT DOES MATHEMATICS MEAN? 

Of all the academic disciplines, mathematics is one of the oldest. It is frequently mentioned, 

used, admired, and criticised, and it has long been regarded as one of the most important aspects 

of human thought. The definition of the word "mathematics" has changed significantly over 

time and among different people. The definition of mathematics is not generally accepted. 

Depending on the type of research the definer has done, different definitions of mathematics 

exist. Each definition identifies the mathematical concept that the researcher favours. This 

suggests that our conceptions of mathematics largely depend on our individual knowledge and 

experiences in the field. Some people may only be able to perform addition, subtraction, 

multiplication, and division calculations. Some people might desire to incorporate 

trigonometry, algebra, and geometry. Others believe it calls for logical reasoning. From all of 

these, it is clear that mathematics is employed to find solutions to issues and questions that 

come up in daily life as well as in various industries and professions. In this lesson, we'll talk 

about a few mathematical definitions. 
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Mathematics is the logical study of shape, arrangement, amount, and many related ideas, per 

the James and James Dictionary of Mathematics. The three subfields are algebra, analysis, and 

geometry. Branch divisions are impossible since they are completely entangled. Geometry 

deals with space and related ideas, and analysis with continuity and limits, while algebra deals 

with numbers and their abstractions. Technically speaking, mathematics is a postulational 

science where necessary inferences are made based on predetermined premises. 

 

Mathematics is viewed as a science of amount and space, where these concepts are expressed 

through symbolic representations. It is a science that involves drawing broad generalisations 

regarding quantity and area. The term "quantity" refers to calculations and arithmetic. 

Geometry, spatial correlations, and theories, such as the science of measurement and deductive 

science using axioms, definitions, and arguments, are all covered by the concept of space. 

Observations of patterns, presumptions, deductions, and conclusions follow from general 

findings. 

 

While being of enormous significance in of of itself, mathematics may be considered as the 

benefactor of other fields. As a result, mathematics has a global shape. Therefore, the people 

who use mathematics determine its nature. Because it offers suggestions for scientific 

extension, it is known as the "queen" of the sciences. 

 

According to Morris Kline, mathematics is a creative or imaginative process that derives 

concepts and recommendations from actual issues. The method is built on intuition and 

construction, with real-world situations serving as its life source. The abstractions will be taken 

from the actual issues and will therefore have a clear purpose in the context. According to 

Kline, the origin of the abstract idea can be found in the physical world. 

 

It is obvious that the material cosmos itself is the greatest of our mathematical creations, and 

that mathematics is truly physical in nature. A symbolic depiction of physical reality is 

mathematics. It need brains and learning capacity to succeed in mathematics. The ability to 

successfully express physical reality with symbols is a creation or discovery of intelligence. 

New mathematical discoveries only result in an improvement in the way symbols are used to 

describe reality. 

 

The most powerful of all theoretical systems, according to Richard Skemp, is mathematics 

since it is the most abstract. Therefore, it has the greatest potential for usage. Engineers, 

scientists, economists, navigators, businesspeople, and especially scientists regard it as a vital 

"tool" (data processing tool) for their work. The primary issue with mathematics is the degree 

of abstraction and generality that has been reached by consecutive generations of exceptionally 

clever people, each of whom has been generalising or abstracting from ideas of preceding 

generations. 

 

Bertrand Russell, a distinguished English mathematician and philosopher, described 

mathematics as "the topic in which we never know what we are talking about nor whether what 

we are saying is true." Typically, we start explanations or discoveries with undefined terms 
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(such as "point," "line," etc.), try to explain other things in terms of these undefined terms, and 

then make propositions. 

 

Logic and creativity are key components of mathematics, which is studied for both its intrinsic 

appeal and a wide range of practical applications. The appeal and intellectual challenge of 

mathematics are for some people the essence of the subject. Others see mathematics' main 

importance as how it relates to their own work. Scientific literacy requires at least a basic 

comprehension of mathematics' nature because it is so important to contemporary culture. To 

do this, students must understand that mathematics is a branch of science, understand the nature 

of mathematical thought, and grow used to fundamental mathematical concepts and techniques  

It is clear that mathematics has a wide range of applications. A science with numerous facets 

is mathematics. It is a magnificent feat of human thought. It is impossible to define it in one 

sentence or a few sentences. But by looking at it from numerous angles and doing some of the 

things that insiders do, the outsider might gradually build a rich understanding of the nature of 

mathematics. It exhorts educators to get their students involved in mathematical activities. 

 

Our understanding of the world is organised through the use of mathematics. It deepens our 

comprehension, improves our ability to communicate, and helps us make sense of our 

experiences. We also find enjoyment in it. We can accomplish a variety of practical tasks and 

solve real-world issues by using mathematics. It is utilised widely in our daily lives. In 

mathematics, we speak both regular English and a unique mathematical language. Students 

must be taught to use both languages. Problems in science, economics, geography, and other 

fields that employ mathematics as a tool are examples of problems that we can work on. In 

addition to describing and explaining, mathematics can also make future predictions. That is 

why mathematics is significant. 

 

Key ideas 

Key I 

• Mathematics is a word whose meaning has varied widely from time to time and from person to 

person.  

• Mathematics is the logical study of shape, arrangement, quantity and many related concepts”. 

It is divided into three fields: algebra, analysis, and geometry  

• Mathematics is regarded as a science of quantity and space where symbolic forms are used to 

express them.   

• Mathematics relies on logic and creativity, and it is pursued both for a variety of practical 

purposes and for its intrinsic interest  

• Mathematics is a way of organising our experiences of the world. It enriches our understanding 

and enables us to communicate and make sense of our experiences 
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Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to achieve 

the school curricula aims, values and aspirations?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How similar are the aims of the subjects discussed in the mathematics curriculum?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum?  

 

SESSION 2: SCIENCE, TECHNOLOGY AND MATHEMATICS  

We will explain science, technology, and math in this session, as well as how they relate to one 

another. It is desired that students will be able to describe how science, technology, and 

mathematics are related in the context of their instruction and how it applies to the outside 

world. 

 

Learning outcomes 

The participant will be able to explain the:  

1. distinction between science and mathematics; science and technology; and technology 

and 

mathematics; and  

2. relationship between science, technology, and mathematics 

 

Natural science exclusively considers patterns that are applicable to the observable world, 

whereas mathematics studies all patterns or correlations. Despite having its roots in practical 

issues, mathematics rapidly turned to abstractions from the real world and subsequently even 

more abstract interactions between those abstractions. 

 

The belief in underlying order, the standards of honesty and transparency in research reporting, 

the usefulness of peer review in determining the worth of new work, and the crucial role of 

imagination are only a few of the characteristics that mathematics has with other sciences. 

Mathematics, like science, involves both figuring out the answers to fundamental questions 

and resolving real-world issues. People can think about the universe of things and events using 

mathematics, and they can express their thoughts in ways that show unity and order. The realm 

of mathematics, which consists of numbers, lines, angles, shapes, dimensions, averages, 

probabilities, ratios, operations, correlations, etc., helps individuals make sense of a cosmos 

that would otherwise appear to be utterly complex. Over the ages, mathematical correlations 

and patterns have been created and improved, and this work is still being done actively now. 

More than ever before, mathematics is used in a variety of subjects of study and has also taken 

on greater importance in daily life. 
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Practically speaking, mathematics is the study of order and pattern. Numbers, chance, form, 

algorithms, and change all fall under its purview. Although mathematics uses simulation, 

experimentation, and even observation as a way to find the truth, it uses logic as its criterion of 

truth rather than observation (Mathematical Sciences Education Board, 1989 p. 31). Due to its 

global applicability, mathematics has a unique place in education. The outcomes of 

mathematics are important and helpful. For instance, mathematics provides science with 

theorems that serve as both a criterion of certainty and a basis for truth. As a result, the language 

of mathematics is a magnificent gift in the creation of the rules of physics. Every aspect of 

modern science bears the indelible mark of mathematics. Cross-fertilization between science 

and mathematics occurs in problems, theories, and notions whether it is intentional or not. This 

is at its greatest point ever. 

 

Therefore, all pupils should have the opportunity to learn for themselves how an idea might be 

expressed in various but comparable ways. Making several representations of the same concept 

and translating them from one to another are important learning strategies, according to one 

branch of study on how individuals learn. One may be sure that a pupil has truly understood a 

relationship when they can start to represent it in tables, graphs, symbols, and phrases. Students 

can practise making those representations and translations by seeing them in situations when 

the solution matters to them. Through this kind of work, students will finally understand how 

mathematics is connected. The primary goal of mathematics instruction ought to be this. Again, 

simplicity is one of the highest qualities in mathematics, just as it is in the sciences. The 

minimal set of principles from which numerous other statements can be rationally deduced is 

the focus of some mathematicians. New mathematical theories can occasionally be generated 

in response to real-world issues, but they also frequently have applicability in real world 

situations. 

 

Without considering its utility, mathematics is frequently practised for its own sake. However, 

the majority of mathematics does have applications, and practical issues frequently inspire new 

mathematical research. A significant portion of these applications and stimulants are provided 

by science and technology. Scientists and engineers may try to perform some practical 

mathematics themselves while working or may seek the assistance of mathematicians. Help 

could come in the form of recommending some already-completed mathematics that will work 

or by creating some new mathematics that will. On the one hand, there have been some amazing 

instances of repurposing mathematical concepts from previous eras. On the other hand, new 

mathematics have frequently been developed in response to the demands of natural science or 

technology. 

 

Science, technology, and mathematics should all work together in the classroom to assist 

students comprehend the value of math and science. Students will understand the value of 

mathematics in science and technology if they regularly engage with it in both basic and later 

complex forms. The contexts of science and technology are particularly rich and significant for 

teaching the value of mathematics and for honing mathematical problem-solving abilities. It is 

appropriate to learn and use mathematics in courses like music, social studies, history, physical 

education, sports, driver education, and home economics. 
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Key ideas 

Key II 

• Mathematics is the study of any patterns or relationships, whereas natural science is concerned 

only with those patterns that are relevant to the observable world.  

• Mathematics shares many of the features of other sciences, such as the belief in an underlying 

order, the ideals of honesty and openness in reporting research, the importance of criticism by 

colleagues in judging the value of new work, and the essential role played by imagination. 

• Science and technology are rich and especially important contexts in which students learn the 

value of mathematics and enable them to develop mathematical problem-solving skills. 

• Natural science or technology has often led to the formulation of new mathematics. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to achieve 

the school curriculum aims, values, and aspirations of Science, Technology and mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How similar are the aims of the Science, technology and mathematics discussed in the 

mathematics curriculum?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

SESSION 3: CYCLE OF MATHEMATICAL INVESTIGATION 

 

The three parts of the cycle of mathematical investigation will also be discussed, together 

with an explanation of mathematical investigation, in this session. It is envisaged that after 

completing real-world problems, students will be able to explain the three parts of 

mathematical investigation. 

Learning results 

The participant will have the ability to clarify by the end of the session: 

1. The mathematical investigation cycle 

2. The three elements of the mathematical inquiry cycle (i.e., representation, manipulation, 

and validation) 

Although it is crucial for students to learn how to answer specific types of well-defined 

mathematical problems, this does not inevitably result in a thorough knowledge of how 

mathematical investigations work. It is possible to define mathematics as an ongoing cycle of 
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research that aims to produce sound mathematical concepts. Although certain procedures are 

included in mathematical research, the order is not defined, and the importance given to each 

phase varies substantially when addressing problems in the actual world. The cycle consists of 

three parts: validation, manipulation, and representation. The three components of the cycle 

should each be studied separately as a component of studying mathematics. The full cycle 

should be available to students so they can conduct their own mathematical explorations. This 

event aims to generate adults who are conversant with mathematical enquiry rather than 

professional mathematicians. 

 

Many students interpret the definition of representation—which is the act of representing 

something through a symbol or expression—to mean only "actual things." Young pupils will 

have an easier time understanding "let A equal the area of any rectangle" than "let A stand for 

the area of the floor of a room." Students must first be persuaded that the work involved in 

replacing abstract symbols with precise quantities is worthwhile. Then, kids must gradually 

come to the understanding that utilising symbols to represent abstractions and abstractions of 

abstractions is useful for problem-solving as well. This could imply showing children that in 

the realm of mathematics, numbers, shapes, operations, symbols, and symbols that sum up sets 

of symbols are just as "real" as blocks, cattle, and cedis, dollars, and pounds. 

 

Students manipulate symbols by moving them around in an organised way to find a solution to 

a problem. When manipulating, students should keep in mind that there are always regulations 

that must be followed to the letter and that these rules are subject to change. That is where 

mathematics' rigour and competitive spirit converge. Set up a problem, imagine some 

quantities, give them qualities, choose some operations, and represent everything with 

symbols. Then, using the logic principles that have been selected, rearrange the symbols to see 

what answers appear. Finding solutions to difficulties in daily life is aided by this technique. 

Validation examines the quality of the solutions. Students are accustomed to solving 

mathematical puzzles with predetermined steps and "proper" solutions. A good solution, 

however, is one that leads to new mathematical discoveries or to useful outcomes in science or 

medicine in actual mathematical studies. engineering, commerce, or somewhere else. As a 

result, judgement, not authority, is required for validation in mathematics. 

 

The cycle of study makes use of concrete materials to serve practical needs. Students should 

frequently be guided by concrete items to identify and explain symbolic linkages. The ability 

to use numbers and shapes to describe a variety of objects in their environment should dawn 

on students. They should eventually realise that just as words and letters in reading and writing 

make up a language, so do numbers and shapes in mathematics. To help students make the 

connection between tangible items and their abstract representations, concrete objects must still 

be used often in lessons. Frequent mention of real-world applications will improve their 

capacity to visualise and carry out tasks in their minds. Encourage your students to use 

numbers, shapes, and operations to explain anything and everything. 
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Key ideas 

Key III 

• Mathematics investigation is a process 

• True mathematical investigations involve certain processes, but the order is not fixed and the 

emphasis placed on each process varies greatly in solving real life problems. 

• Representation is a process of representing something by a symbol or expression and this is 

taken by many students to refer only to “real things. 

• Manipulation involves students in moving symbols about in a certain ordered manner to arrive 

at a solution to a problem 

• Validation deals with how good the solutions are. Students are used to working mathematical 

problems in which the procedures are predetermined and “correct” answers are expected. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to do mathematics through mathematical investigations?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How are the three components of the cycle of mathematical investigation related?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum) by teaching mathematics through mathematical investigations?  

 

 

SESSION 4: MATHEMATICS AS AN INVENTION AND AS A DISCOVERY 

 

In this lesson, we'll concentrate on defining mathematics as either an invention or a discovery 

and discussing how the two relate to one another. In the context of mathematics education, it 

is intended that students would be able to describe mathematics as an invention and a discovery. 

Learning results 

The participant will be able to describe the following by the end of the session: the relationship 

between mathematics as an invention and as a discovery 

 

The fundamental ideas in mathematics are abstractions of real-world experiences, such as the 

physical counterparts of whole numbers and fractions. Others were concocted by the human 

intellect, with or without some assistance from experience. For instance, mathematicians 

created the irrational number 2 to symbolise the hypotenuse of a right-angled triangle with both 

arms being one unit long. Other options include negative numbers and variables to reflect 

temperature changes and other shifting physical phenomena like ds/dt. The Babylonians and 
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the Egyptians are credited with inventing or creating numbers and numerals. Their own 

numerals were created by the Mayans and Romans. The numbers differ from one group of 

people to another, but the structure that already exists and demonstrates the relationship 

between these numbers cannot be handled physically. It is necessary to find the structures and 

do this. leads to mathematics' discovery-based character, but proofs, operations, numerals, and 

other inventions of the human intellect are also inventions. 

 

Areas, perimeters, and other concepts like these all exist in reality since it is something that can 

exist. The discovery of all these will heavily rely on the human mind. For instance, Leibnitz 

and others are credited with the discovery of Calculus, Newton with the discovery of 

mechanics, and Galois with the development of group theory. According to one school of 

thinking, mathematicians uncover the principles and laws of mathematics, which are found in 

nature just as certain physical laws are found there. The opposing school holds that 

mathematics is more akin to a piece of art, such as a painting, which doesn't exist until it is 

created by the artist, in this case a mathematician. Because mathematics requires as much 

creativity as art does, it is viewed as an art. Like a painter or poet, we can create beauty in 

mathematics by using patterns, but unlike these artists, the patterns used by mathematicians are 

made of ideas rather than words, which last longer over time (G. H. Hardy, A Mathematician's 

Apology). This is why mathematical beauty lasts longer than artistic beauty. 

 

Key ideas 

Key I 

• Mathematics emerged out of an invention or a discovery 

• The structures of mathematics need to be discovered and that leads to the discovery nature of 

mathematics. 

• Human mind plays a great role in the discovery of mathematics. 

• Mathematical proofs, operations, numerals etc are invented and so are creations of the human 

mind 

• Mathematics is regarded as an art because we use a lot of imagination in mathematics as we do 

in art.  

• We create beauty in mathematics, using patterns like a painter or a poet, but mathematical 

beauty is more lasting than that of art because unlike the poet or painter. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to appreciate mathematics as an invention and discovery?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 
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Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematics as an invention and as a discovery equipped you to be a 

better mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum) in context of mathematics as an invention and as a discovery?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

UNIT 2: SOME MATHEMATICS EDUCATION TERMINOLOGIES 

 

We spoke about several definitions of mathematics and the basics of mathematics in unit 2. 

During the conversation, a few terms related to mathematical education were used. We will 

define a few of the terms used frequently in mathematics instruction in this unit. We will go 

over how some of the terminologies are similar and different. 

 

Learning outcome(s) 

By the end of the unit, you should be able to:  

1. explain mathematical axioms and provide examples; 

2. recognise and explain mathematical operations,  

3. recognize and explain a mathematical proof,  

4. recognise and explain mathematical algorithms,  

5. differentiate between a mathematical conjecture and theorem, and  

6. recognise and explain mathematical paradoxes/antinomies. 

 

SESSION 1: MATHEMATICS AXIOMS 

 

In this session, we'll concentrate on defining mathematical axioms and discussing how they 

apply to math instruction. It is envisaged that students will be able to explain mathematics as 

it is taught in math classes. 

 

Learning outcomes 

By the end of the session, the participant will be capable of  

1. explaining mathematical axioms; and  

2. use the idea of axioms in teaching and learning mathematics.  

 

The Greek word "axios," which means "something worthy," is where the word "axiom" comes 

from. A statement that is taken as true is referred to as an axiom in mathematics. They are 

assertions made in relation to undefined words that are regarded as obvious truths. Axioms are 

assertions that appear to apply to a fundamental idea. They are widespread beliefs that must be 

acknowledged because of the way in which human cognition operates. The foundation of a 

mathematical theorem is an axiom. Simply said, axioms are viewed as universal truths. 

 

Euclid was reputed to have taught mathematics at Alexandria University in 300 BC. He 

published a book titled "Elements." This book was viewed as an introduction manual that 

covered all of primary mathematics, including algebra, geometry, and arithmetic (not symbolic, 

but geometrical). Only the Bible is supposed to have had more printings than The Element, 

which is considered to be the most successful mathematics textbook in history. Since Euclid 

made various rational claims that were uncontested, his name came to be connected with truth; 

"Euclid is truth." 
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The following are included in Euclid's set of axioms known as the "Five Common Notions": 

1. Things that are equivalent to one another are also equivalent to that object. For instance, if 

3 + 2 = 5 and 4 + 1 = 5, then 3 + 2 = 4 + 1 as each equal 5.  

2. The wholes are equal if equal things should be added to equal things. For instance, if 𝑎 =

𝑏, 𝑎 + 𝑥 = 𝑏 + 𝑥.  

3. The remainders are equal when equals are subtracted from equals. If 𝑎 = 𝑏, 𝑎 − 𝑥 = 𝑏 −

𝑥.  

4. Things that are in sync with one another are on an equal footing. Eg 3 + 2 = 2 + 3. Things 

that fit together equally, in other words, are equal to one another. By "fitting one object to 

another," Euclid presumably implies imaginarily picking up, for example, a triangle and 

setting it down upon a comparable triangle to see if all the points match up.  

5. Greater than the sum of its parts is the totality. 

 

Noting that none of these seem to require any proof, they all seem to be self-explanatory. 

 

SESSION 2: MATHEMATICAL OPERATIONS 

 

The explanation of mathematical operations and their uses in math instruction will be the main 

topics of this session. It is envisaged that students would be able to employ mathematical 

operations in the way that they are taught. 

 

Learning outcomes 

The participant will be able to:  

1. describe mathematical operations by the end of the session, and 

2. use the idea of operations in the teaching and learning of mathematics 

 

A process involving a change or transformation is referred to as an "operation." The process 

begins with an object in a specific state of affairs; an operation is performed, causing the object 

to change, which leads to a final state of affairs. Thus, an input-output scenario is created. 

Between the input time and the output stage, an operation takes place. Any process used on 

one or more initial values (the operands) to produce a new value is referred to as an operation. 

 

Mathematics is based on the concept of an operation. The process of applying procedural rules, 

such as addition, subtraction, and multiplication, is known as a mathematical operation. and 

discord. Other operations include squaring, higher powers, differentiating, integrating, and 

using square, cube, and other types of roots. Each of these processes includes the manipulation 

of mathematical variables, numbers, or other things. Each has a distinct underlying structure to 

maintain, which guides what has to be done. When the addition operation is performed on the 

operands 3 and 4, the result is a sum of 7. Even quite algebraic approaches like factorization 

require a solid grasp of fundamental operations. 

 

There is always a precise formula for working out the outcome of a specific operation. 

Regardless of the quantity of input values, the result of numerous operations is always one 

value. The square root procedure is an exception, as the results can be either positive or 
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negative. Such operations can be categorised as functions, one-to-one or many-to-one 

mappings: 

 

An operator is a symbol that represents a particular operation. The plus sign (+) serves as the 

operator for addition, while the integral sign serves as the operator for integration. Sometimes 

the same operators are represented by various symbols. In computing, the operator * stands for 

the same thing as the mathematical operator, "times," denotes. In many branches of 

mathematics, different operators are employed. For instance, logical relationships can be 

expressed using a variety of sets of operators. 

 

Addition 

Putting together or connecting two things is what the addition operation entails. You must 

combine the entities that are participating in the addition process, according to the procedure. 

As an illustration, to add 5 and 4, or 5 + 4, we first depict 5 as 3 concrete objects and 4 as 4 

concrete items, then we combine them and add them all up to get 9 concrete pieces. The first 

addend (5) and the second addend (4) are counted individually, combined, and then all are 

counted to arrive at the result. This method is frequently known as the "counting all principle" 

(9). In other words, to create a collection of 𝑥 items and a collection of y objects, combine the 

two collections, and then count all the things to create the 𝑥 + 𝑦 objects. 

 

At a higher level, the counting-on technique can be used to calculate 5 + 4. In this method, you 

start with one of the addends (typically the higher number), say 5, and then just count on four 

from that number using some objects or fingers or just mentally, stating 5: 6, 7, 8, 9, and then 

give the last count, nine, as the solution. The binary nature of addition means that it can only 

combine two quantities at once. As a result, when adding three or more numbers, we pair the 

numbers together until they are all added. 

 

Subtraction 

A defined quantity is subtracted from a bigger collection of elements in a subtraction operation. 

The Take Away Aspect of Subtraction is a common name for this. Taking away from or 

removing from is the proper course of action in this situation. For instance, 9 − 4 =? means 

that there are 9 things on the table. Kwame removes four of the objects. How many things are 

still on the table, flow? 

 

Comparing and matching two sets is a second way to look at subtraction. This involves 

comparing the number of items in two collections or sets by matching them one to one, and 

then counting the number of extra items in the larger set. For instance, Kwesi has 5 similar 

items, whereas Ama has 9. Ama has how many more items than Kwesi? For 9-5?). 

 

A third interpretation of subtraction operation is referred to as Missing Addend. This requires 

finding how many more items to be added to one collection to get the number of items in the 

second collection. E.g. Stephanie has 6 books and Robert has 9 books. How many more books 

does Stephanie need to get as many books as Robert? (𝑓𝑜𝑟 6+? = 9 𝑜𝑟 9 − 6? ). 
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In each of the three cases, the subtraction operation requires that we look for the difference in 

the two given numbers. 

 

Multiplication 

Multiplication can be understood as combining sets or making the same addition repeatedly. 

In order to multiply as mixing sets, two sets must be created and each member of the first set 

must be matched with every member of the second set. This is also known as a Cartesian 

product, where all of the members of one set are matched with all of the members of another 

set in ordered pairs. For instance, Musa owns 6 shirts with various colours and 4 sets of pants 

with various colours. How many outfits can he wear for a day out? This entails combining each 

pair of trousers with each shirt, resulting in a total of 4 × 6 = 24 pairs or combinations. 

The same number must be added again a certain number of times in order for multiplication to 

function as repeated addition. For instance, 64 is translated as 4 + 4 + 4 + 4 + 4 + 4 = 24. 

This is frequently understood to mean "6 lots of 4." 6𝑥4 translates to 6 lots of 4 − 4 + 4 + 4 +

4 + 4 + 4 = 24. 

Additionally, 3×9 indicates that there are 3 lots of 9, which add up to 27. Students need 

consistency in the interpretation in order to establish the commutative law, such as 3 × 9 =

 9 × 3. 

 

Division 

Division can be seen as both a measurement problem and a partition problem. 

We are dealing with the measurement component of division when both the total number of 

things and the number of items to be placed in each group are specified. The number of groups 

that can be formed from the bigger collection must be determined. This results in the grouping 

component of division, which gives rise to the idea of repeated subtraction. For instance, 15 ÷

5 = 3 can be understood as how many students would receive the mangoes if there are 15 

mangoes and each student is to receive 5 mangoes. 

 

The partition component of division requires the provision of both the total number of items 

and the number of groups to be formed. In this instance, we must determine how many items 

each group will include. This part of division is also known as the "sharing" aspect. 15 apples, 

for instance, are to be distributed equally among 5 students. Each pupil will receive how many 

oranges? This clarifies the idea of "take one, I take one" sharing. 

 

"One of the two equal factors of the given integer," is how the square root of a number is 

defined. We attempt to factorise a given integer so that there are two equal factors using this 

interpretation of the square root. We must identify the equal elements of the supplied integer 

in order to do the square root function. For instance, since 81=99, we say that the square root 

of 81 is 9 and that the square of 9 is 81. By dividing the factors into two equal groups after 

prime factorising the provided number, this procedure can be carried out methodically. The 

square root of the product of each group's factors is then determined. To find 576, for instance, 

the technique begins by prime factorising 576 as  

576 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3  



15 
 

576 = (2223)(2223) = 2424. 

𝐻𝑒𝑛𝑐𝑒 √(576) = 24. 

 

By dividing the prime factors into three equal groups, we may expand this to include the cube 

root of a particular integer as one of its three equal components. Try the formula √216
3

=

?  216 = 2 × 2 × 2 × 3 × 3 × 3 =  (2 × 3) × (2 × 3) × (2 × 3). 𝐻𝑒𝑛𝑐𝑒, √216
3

= 2 × 3 =

6, one of the three equal factors. 

 

 

Key ideas 

Key I 

• Mathematical operation is the process of carrying out rules of procedure such as addition, 

subtraction, multiplication. And division. Others are squaring, and higher powers; roots such 

as square roots, cube roots, etc, differentiating, integrating, etc.  

• The symbol used to indicate an operation is called an operator 

• Addition operation means putting together, or joining two entities 

• The subtraction operation is the process of removing a specified quantity from a given larger 

collection of items 

• Multiplication as repeated addition requires that the same number be added repeatedly for a 

required number of times 

• Division can be interpreted as a measurement problem and as a partition problem 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply mathematical operations in the teaching and learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematical operations equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 3: MATHEMATICAL ALGORITHMS  
 

In this session, we'll concentrate on defining mathematical algorithms and discussing how they 

might be used in math instruction. It is envisaged that students would be able to utilise the 

mathematical algorithms taught in math classes. 
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Learning outcomes 

The attendee will be able to:  

1. describe mathematical algorithms by the end of the session. 

2. apply the idea of mathematical algorithms to math instruction and learning. 

 

A mathematical algorithm is a finite set of specific instructions that can be used to make 

calculations or to solve problems, including all possible solutions. It usually describes a series 

of actions taken to carry out a mathematical calculation. It is a step-by-step process with as 

many repetitions as necessary that aims to accomplish a specific goal in a set amount of time. 

The algorithms for addition, subtraction, multiplication, and division are the most often used. 

Students can use the following procedures, for example, to add the single-digit numbers 4 +
7 + 6: 4 + 7 + 6 = 11 + 6 = 17 (starting from the left); 4 + 7 + 6 = 4 + 13 = 17 (starting 

from the right); 4 + 7 + 6 − 7 + 10 = 17; (Looking for 10). 

 

HMMDIA 

"How Much More Do I Add" is the name of one (not very common) subtraction method 

(HMMDIA). The algorithm uses an additive component, increasing the quantity to be 

subtracted while subtracting it until you reach the minimum (number from which we are 

subtracting). For instance, the question "136 - 27=?" might be read as "How Much Do I Add 

to 37 to Get 146." This is calculated by adding each number starting at 37 up to 146 as follows: 

First, how much more do I need to add to 37 to get the number 40 (the nearest ten)? 

Note the response 3. 

In order to obtain 130, how much more do I need to add to 60? 

Note the response, 70. 

In order to obtain 146, how much more do I need to add to 110? 

Keep the response 36. 

Add the outcomes now. 3+ 70+ 36 = 109 

This means that 146 - 37 Equals 109. 

Based on structured materials like the abacus and Dienes' blocks, we have algorithms for 

multiplication that demonstrate the methodical technique to employ when multiplying one-

digit, two-digit, three-digit, etc. factors, with or without regrouping and using extended forms. 

There are also numerous algorithms for scaffolding and regrouping when dividing numbers by 

one-digit, two-digit, etc. divisors. 

In lengthy division, a step-by-step process is employed. The algorithm for a straightforward 

calculation like 95 divided by 4 (95÷4) is as follows: 

4 can be divided (goes into) 9 how many times? 

How many are still remaining after the response of 2? 1 

the 1 (ten) should come before the 5. 



17 
 

How many times is 15 divided by 4? 

The answer is 3, leaving a 3 as the remainder. 

The result is 23 with a remainder of 3, thus the equation is 95 ÷ 4 = 23 remainder 3. This step-

by-step method is referred to as a long-division algorithm. 

 

FOIL 

The acronym "FOIL," which stands for "First Outside, Inside Last," is another helpful example 

of an algebraic algorithm for multiplying polynomials. It is a useful method for keeping in 

mind how to multiply two binomials. For instance, the method requires that we multiply the 

First terms (a and c), or ac, before multiplying the Outside terms (a and d), or ad. 

multiplying the last terms (b and d), bd, after multiplying the inside terms (𝑏 𝑎𝑛𝑑 𝑐), 𝑏𝑐. 

Finally, we calculate the total of all the outcomes (products). (𝑎𝑥𝑐) + (𝑎𝑥𝑑) + (𝑏𝑥𝑐) + (𝑏𝑥𝑑). 
Thus, (𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑒 + 𝑏𝑑 is produced. Specifically, we use the FOIL 

algorithm to find the product (2𝑥 + 3)(5𝑥 − 6) as follows: 

Multiply the First terms by 2𝑥(5𝑥) to get 10𝑥2, the Outside terms by 2𝑥(−6) to get −12𝑥, 

the Inside terms by 3 × (5𝑥) to get 15𝑥, and the Last terms by 3 × (−6) to get 18𝑥. 

Find 10𝑥2 − 12𝑥 + 15𝑥 − 18, which is the sum of all the results. This can be expressed as 

(2𝑥 + 3)(5𝑥 − 6) = 10𝑥2 + 3𝑥 − 18. 

 

BEDMAS/PEDMAS 

Mathematicians have agreed that the BEDMAS/PEDMAS sequence is appropriate when 

solving mathematical problems that call for the use of various operations (brackets or 

parenthesis, exponents, division, multiplication, addition, and subtraction, among others). The 

BEDMAS alphabet uses letters to represent various components of the operation. In 

mathematics, the sequence in which your operations are carried out is governed by a set of 

rules. If you make calculations out of order, your solution is probably incorrect. When using 

the BEDMAS order of operations, keep in mind that you should move from left to right. 

Exponents are always listed after brackets or parentheses. Working from left to right, you 

multiply or divide according to whatever comes first. If multiplication comes before division, 

perform it first. The same is true for addition and subtraction; subtract before adding when the 

subtraction comes first. 

When there are many pairs of parentheses, start with the inner pair and work your way to the 

outer pair. (a) As an illustration, 26 + [8(7 − 3)] 

First, complete the inside bracket (parenthesis):  26 + [8 × 4]. 

Complete the last bracket: 26 +  32. 

Add the number: 58. 

Consequently, 26 + [8(7-3)] = 58 

(b) 11 − (6 + 7)2 + 6 × 29 

Put the parenthesis in place as follows: 11 − (13)2 + 6 × 29. 
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Exponent calculation for 11 − 169 + 6 × 29. 

Multiply 11 − 169 +  174 now. 

Subtracting now: −158 + 174 

Add: 16 now 

Consequently, 11 − (6 + 7)2 + 6 × 29 = 16. 

The acronym BEDMAS, which stands for Brackets of Division, Multiplication, Addition, and 

Subtraction, is comparable to the well-known BODMAS (or BOMDAS). 

Algorithms' role in school mathematics is shifting due to the accessibility of calculators and 

computers outside of the classroom. Learning a single standard algorithm for every operation, 

especially early on, may actually impede students' ability to gain a deeper knowledge of 

mathematics. We must introduce pupils to various algorithms and motivate them to create their 

own. This would encourage students to avoid using algorithms to replace critical thinking and 

common sense. Students must be helped to approach math issues in multiple ways. This gives 

children versatility in mathematics and aids in their development of computational skills. We 

must reach every student; while one algorithm might be effective for one student, another 

algorithm might be more effective for that student. In order to effectively teach and understand 

mathematics, multiple algorithm approaches must be used. Studying many algorithms for an 

operation will assist students comprehend the operation because various algorithms are 

frequently based on various notions. 

Furthermore, offering a variety of possible methods conveys the idea that mathematics is both 

logical and inventive. Giving pupils multiple algorithms for key operations prepares them to 

practise mathematics outside of the classroom. A goal of school mathematics is to develop 

pupils' capacity for maths by teaching them algorithms (NCTM, 1989). When students create 

an efficient algorithm, they can utilise it to quickly tackle a variety of connected issues without 

having to approach each one from scratch. 

 

Key ideas 

Key I 

• Mathematical algorithm is the process of carrying out rules of procedure such as HMMDIA, 

FOIL and BEDMAS/PEDMA  

• Teaching several algorithms for important operations equips students to do mathematics 

outside the classroom  

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply mathematical algorithms in the teaching and learning of mathematics?  
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• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematical operations equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 4: MATHEMATICAL CONJECTURE  

 

In this session, we'll concentrate on defining mathematical conjecture and discussing how it 

can be used in math instruction. It is envisaged that students would be able to use mathematical 

conjecture in their coursework. 

 

Learning outcomes 

The participant will be able to explain mathematical conjecture and apply the idea to the 

teaching and learning of mathematics by the end of the session. 

A statement with an undetermined truth value is referred to as a conjecture/hypothesis. 

It is a claim that has not yet been established as true or false. It is an unsupported assertion that 

is thought to be true or that seems to be accurate. It is used to characterise situations where an 

inference or judgement is made based on speculation, shaky evidence, or both. A speculation 

is an inference drawn from circumstantial evidence, a guess, a conclusion drawn from 

insufficient data, or an assertion made without supporting evidence. A simple statement that 

someone believes to be supported by evidence is referred to be a hypothesis. The key 

characteristic of a supposition is the absence of any supporting evidence. 

A prime number only has itself and one other factor. Composite numbers are those that include 

additional components. Here are a few hypothetical scenarios involving prime numbers to 

illustrate how educated predictions can be made and afterwards improved upon.  

 

1. The conjecture of the quadratic function 𝑓(𝑛)  = 𝑛² − 𝑛 + 41 for generating primes. 

This was later proved to work for the first 40 natural numbers (n) but not beyond though 

this has been accepted for quite a long time. 

 

2. Goldbach's even number conjecture: Any even number greater than 2 is the sum of 

two primes e.g. 4 = 2 + 2;  6 = 3 + 3;  8 = 3 + 5;  10 = 3 + 7; 28 = 11 + 17;  48 =

5 + 43;  78 =  7 + 71 = 17 + 61;  102 = 5 + 97 = 19 + 83; etc. 
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3. Fermat's numbers in generating prime numbers. In 1640, Fermat, a French 

mathematician, who was lawyer by profession but an amateur mathematician in his 

spare time, conjectured that 21 is a form which represented primes only. Check to see 

that the first four, 

22  +  1 =  5; 

222
+ 1 = 17; 

223
+ 1 = 257, and 

224
= 65537 are prime numbers 

 

Hundred years later, Euler Leonhard (1707-1783) disproved this by showing that the fifth 

Fermat’s number, 225
+ 1 = 4,294,967,296 + 1, is not a prime. It is divisible by 641.  

• In 1970, a Russian named Matsyasievich discovered several explicit polynomials of 

this sort that generate only primes. The largest was 211213 − 1, discovered at Illinois 

University. 

• In 1971 (March 4), Bryant Tuckerman found another prime to be 219937 − 1. 

• In 1978 two students, Laura Nickel and Curt Noll found a larger prime 221701 − 1. 

Later Curt found 

 

223209 − 1 as a prime.  

• Then in 1983, David Slowinski (of the Cray Research Laboratory) found 286243 − 1 to 

be the largest known prime. This was a 3000-year-old puzzle solved (Los Angeles 

Times). 

 

The largest prime known has been an integer the special form 2𝑝 − 1, where p is also a prime. 

Such primes are called Mersenne primes, after a French monk, Martin Mersenne who studied 

them in the 17th century. After the discovery of the first few Mersenne Primes it took more than 

two centuries with rigorous verification to obtain 47 Mersenne primes. By mid - 1999, the 

largest Mersenne prime was 23021377 − 1. 

 

4. Fermat’s ‘two square’ theorem: - the Primes may (if we ignore the special prime 2) 

be arranged in two classes, the primes 5, 13, 17, 29, 37, 41, ...which leave a remainder 

1 when divided by 4, and the primes 3, 7, 11, 19, 23, 31,..,which leave a remainder 3. 

All the primes of the first class and none of the second, can be expressed as the sum of 

two integral squares thus, 5 =  12 + 22;  13 = 22 + 32;  17 = 12 + 42;  29 =  22 +

 52. 

This theorem is ranked one of the finest of arithmetic. Verify for some more numbers 

in the category. 

 

 

5. The famous Fermat’s Last theorem (Pierre de Fermat (1601-1665) 

 

“When n is an integer bigger than 2, it is impossible to solve the equation 𝑥𝑛 + 𝑦𝑛 =

 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑧 are integers”. 



21 
 

 

Euler, Lagrange, Kummer and Riemann tried in vain to disprove or prove it. Eduard Kummer 

(1939) developed his theory of Ideal Numbers as a result. This has been a rumour for many 

centuries. Fermat asserted that he had the evidence. He is thought to have begun putting the 

suggestions in a margin but claimed he ran out of room before passing away. A 19-year-old 

British academic named Andrew from the Massachusetts Institute of Technology in 

Cambridge, United States, also asserted to have the evidence, but he insisted on 200 pages of 

foolscap paper. The "Twin Prime Conjecture," which asserts that "there exist an unlimited 

number of primes p such that p+2 is likewise a prime," and the "Odd Perfect Numbers 

Conjecture," which claims that "there are no odd perfect numbers," are a couple of examples. 

The countless primes of Euclid: - The Greek geometer Euclid hypothesised that there existed 

an endless number of primes when he was alive, approximately 300 B.C. 

 

• Euler, Lagrange, Kummer and Riemann tried in vain to disprove or prove it. In so doing, 

Eduard Kummer (1939) created his theory of Ideal Numbers. For hundreds of years this 

remains a conjecture. Fermat himself claimed he had the proof. He is believed to have 

started writing the hints in a margin but claimed he hadn’t enough space to complete it 

when he died. 

• A 19 year old British professor Andrew (Massachusset Institute of Technology, 

Cambridge, USA) also claimed he had the proof but he needed 200 pages of foolscap 

paper to prove it. 

 

Here is an example of its subsequent proof. Assume that the number of primes is finite. If this 

is the case, then P must be the greatest prime. Create the sum of all these primes, then 

2 × 3 × 5 × 7 × 11 × 13 × 17 ×. . .×  𝑃 + 1 = 𝑄 

Q will always have a leftover of 1, no matter which prime number we divide it by. 

Since Q cannot be divided by any of these primes, it must either be a prime itself or a composite 

number that can be divided by a greater prime. (Q can be factored into primes if it is composite. 

Since none of these numbers are factors of Q, these primes could not be any of the numbers 

2,3,5...,P.  In either scenario, the initial assertion that P is the greatest prime is false, proving 

that there is another prime that is greater than P. 

There can’t be a finite number of primes. The product of all previous primes plus 1 generates 

another prime. Systematically, we have 

2 × 3 × 5 + 1 = 31 

2 × 3 × 5 × 7 + 1 = 211 

2 × 3 × 5 × 7 × 11 + 1 = 

2 × 3 × 5 × 7 × 11 × 13 × … × 𝑛 + 1 = 𝑒𝑡𝑐 

 

When one number is divided by another that is a prime, there must be a remainder. 
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Key ideas 

Key I 

• Mathematical conjecture is a mathematical proposition that is yet to be proven or disproved. 

• A prime number only has itself and one other factor.  

• Composite numbers are those that include additional components  

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply mathematical conjecture in the teaching and learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematical conjectures equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 5: MATHEMATICAL THEOREM 

 

In this session, we'll concentrate on defining mathematical theorems and discussing how they 

might be used in math instruction. It is envisaged that students would be able to apply theorems 

taught in mathematics classes. 

Learning outcomes 

The participant will be able to: clarify mathematical theorems and apply them to the teaching 

and learning of mathematics by the end of the session. 

Mathematical Theorem 

A proposition that has been shown to be true is called a theorem. A widely acknowledged rule 

or principle in mathematics is known as a theorem. A conjecture turns into a theorem once it 

has been demonstrated. Theorems are conclusions reached by deducing from premises and 

applying the axioms and canon laws of logic. 

 

Here are three instances.  

Theorem of Prime Numbers 
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The asymptotic distribution of the prime numbers is described by the prime number theorem 

(PNT). The theorem provides a general account of the distribution of prime numbers among 

positive integers. It formalises the intuitive notion that as primes get bigger, they become less 

common. 

According to the theorem, the probability that a random integer chosen between zero and a 

large integer N would be a prime number is around 
1

𝑙𝑛𝑁
,, where ln(N) is the natural logarithm 

of N. As a result, the probability that a random integer with at most 2n digits is prime is roughly 

half that of a random integer with at most digits. For instance, among positive integers with a 

maximum of 1000 digits, roughly one in 2300 (𝐼𝑛 101000 ≈  2302.6)  is a prime number, 

whereas among positive integers with a maximum of 2000 digits, about one in 4600 

(𝐼𝑛 102000 ≈ 4605.2). is. In other words, for the first N integers, the average distance between 

consecutive prime numbers is nearly equal to ln (N).  

Binomial Theorem 

The theorem states that any power of 𝑥 +  𝑦 can be expanded into a sum of the form 

(𝑥 + 𝑦)𝑛 = (
𝑛
0

) 𝑥𝑛𝑦0 + (
𝑛
1

) 𝑥𝑛−1𝑦1 + (
𝑛
2

) 𝑥𝑛−2𝑦2 + ⋯ + (
𝑛

𝑛 − 1
) 𝑥1𝑦𝑛−1 + (

𝑛
𝑛

) 𝑥𝑛𝑦𝑛, 

where each (
𝑛
𝑘

) is a specific positive integer known as a binomial coefficient. This formula is 

also referred to as the binomial formula or the binomial identity. 

Using summation notation, it can be written as (𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑘

)𝑛
𝑘=0 𝑥𝑛−𝑘𝑦𝑘 = ∑ (

𝑛
𝑘

)𝑛
𝑘=0 𝑥𝑛−𝑘   

The final expression follows from the previous one by the symmetry of x and y in the first 

expression, and by comparison it follows that the sequence of binomial coefficients in the 

formula is symmetrical. 

A simple variant of the binomial formula is obtained by substituting 1 for y, so that it involves 

only a single variable. In this form,  

The formula reads: (1 + 𝑥)𝑛 = (
𝑛
0

) 𝑥𝑛 + (
𝑛
1

) 𝑥1 + (
𝑛
2

) 𝑥2 + ⋯ + (
𝑛

𝑛 − 1
) 𝑥𝑛−1 + (

𝑛
𝑛

) 𝑥𝑛 or 

equivalently (1 + 𝑥)𝑛 = ∑ (
𝑛
𝑘

)𝑥𝑘𝑛
𝑘=0 . 

 

Pythagorean Theorem 

The Pythagorean Theorem is a relation in Euclidian geometry among the three sides of a right-

angled triangle. It states that the square of the hypotenuse (the side opposite the right angle) is 

equal to the sum of the squares of the other two sides. The theorem can be written as an equation 

relating the lengths of the sides a, b and c, often called the Pythagorean equation: : 𝑎2 + 𝑏² =

 𝑐², where c represents the length of the hypotenuse, and a and b represent the lengths of the 

other two sides. 

The theorem is named after the Greek mathematician Pythagoras (ca. 570 BC - ca. 495 BC), 

who by tradition is credited with its proof although it is often argued that knowledge of the 

theorem predates him. Although there is little surviving proof that they applied it within a 

mathematical framework, there is evidence that Babylonian mathematicians understood the 

formula. Chinese, Indian, and Mesopotamian mathematicians have all been credited with 

independently discovering the solution; some have even offered proofs for certain 

circumstances. 
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The number of proofs for the theorem may be the highest of any mathematical theorem. There 

are both algebraic and geometric proofs, some of which date back thousands of years. The 

theorem can be applied to a variety of contexts, including higher-dimensional spaces, non-

Euclidean spaces, non-right triangle-containing objects, and even non-triangular things 

altogether. n-dimensional solids, however. The Pythagorean Theorem "has attracted interest 

outside mathematics as a symbol of mathematical obscurity, mystique, or intellectual power; 

popular references are abundant in literature, plays, musicals, songs, stamps, and cartoons." 

 

Key ideas 

Key IV 

• Theorem is a mathematical proposition that has been proven to be true. 

• A mathematical theorem is a mathematical conjecture that has been proven 

• The Pythagorean Theorem is a relation in Euclidian geometry among the three sides of a right-

angled triangle 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply mathematical theorem in the teaching and learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematical theorem equipped you to be a better mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

SESSION 6: MATHEMATICAL PARADOXES/ANTINOMY 

In this session, we will focus on explaining mathematical paradox; as well as its applications 

in the teaching and learning of mathematics. It is hoped that learners would be able to apply 

mathematical paradox as used in mathematics education. 

 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain mathematical paradox 

2. apply the concept of mathematical paradox in the teaching and learning of 

mathematics 

 

A proposition that is undecidable or that has been shown to be incapable of being proven to be 

either true or incorrect is known as an antinomy. Kurt Gödel is the mathematician whose name 

is associated with this; he demonstrated in 1931 that there are propositions in every 
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mathematical system that cannot be resolved. A paradox is another name for a mathematical 

antinomy. 

 

The mathematical definition of the word paradox has to do with how something is subjectively 

perceived, how a statement is understood, etc. A paradox is a statement that contradicts itself 

or a circumstance that appears to defy logic, to put it simply. It's a claim that defies common 

sense at times while also being profoundly obscure and profoundly profound at other times. 

Anything that on the surface looks to be false but is actually true, or that initially seems to be 

true but is actually false, or that initially seems to be self-contradictory, is a mathematical 

paradox. A paradox is an actual conclusion that surprises our human senses. They are in perfect 

health. The amazing thing about mathematics is that they do, in fact, awaken our intuition. 

 

"Two fathers and their two sons leave town," for instance. The town's population falls by three 

as a result. False? True, assuming the trio consists of a grandfather, a father, and a son. Different 

sorts of paradox exist. One such instance, which we might refer to as a phenomenological 

paradox, is when fundamental truths about what the mathematics is meant to depict are 

contradicted by the mathematical conclusions. Then there are assertions that can be proven to 

be both true and untrue, known as logical paradoxes. 

 

Think a little about this. Did you know that “0.999...” Equals “1”? Check the proof: 

Let 𝑥 = 0.999. ..  

𝑇ℎ𝑒𝑛 10𝑥 = 9.999. . . 10𝑥 − 𝑥 = 9.999. . . −0.999. ..  

9𝑥 = 9. 

𝑥 = 1. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 0.9999. . . = 1. 

 

Some examples of Antinomies 

 

Barber's Hypothesis. 

English philosopher Bertrand Russell (1872–1970) imagined a community with a male barber 

and all the men had clean shaven faces. It was well known that the local barber exclusively 

shaved the men who did not shave themselves. Only those who don't shave themselves get 

shaved by me. And who did the barber's shaving? Set theory was developed as a result of 

extremely meticulous formalisation efforts made by mathematicians. But even the most basic 

understanding of set theory results in the Barber's paradox. He was shaved by the barber if the 

barber did not shave himself at that point—a paradox. Another contradiction is that if the barber 

shaves himself, then he was not shed by the barber. 

 

 

Libel of Epimenides 

The name of this logic game pays homage to the Cretan philosopher of the sixth century BC. 

Epimenides of Knossos is quoted as saying, "Cretans are always liars. Titus 1:12, when the 

author claims regarding Cretans that "they are all liars, as one of their own has said," mentions 
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Epimenides. It is a paradox within itself. This is supposed to surface when the veracity of 

Epimenides' claims are questioned. I lie all the time, but are they telling the truth or me? 

 

Aristotle's Paradox of Place:  

"If everything that exists has a space, then place too will have a place, and so on endlessly." 

 

The Galileo Paradox 

A demonstration of one of the unexpected characteristics of infinite sets can be found in 

Galileo's paradox. Galilei made assertions about the positive integers that appear to be in 

conflict. First of all, certain numbers have squares while others do not; therefore, the total 

number of numbers, both squares and non-squares, must be greater than the sum of the squares 

alone. Yet every square has a unique positive number that serves as its square root, and every 

number has a unique square as well. As a result, none can exist in excess of the other. In the 

setting of infinite sets, this is an early use of the concept of one-to-one correspondence. Galileo 

came to the conclusion that infinite sets are not subject to the concepts of less, equal, and larger. 

 

Using the same techniques, Cantor demonstrated that this constraint was unnecessary in the 

nineteenth century. It is possible to meaningfully define comparison across infinite sets, and 

by this definition some infinite sets are strictly larger than others (by which definition the two 

sets he discusses, integers and squares, have "the same size"). 

 

Achilles and the Tortoise 

According to Aristotle, the slower runner must always keep a lead since the fastest runner can 

never pass the slower one because the pursuer must first get to the starting line. Achilles and 

the tortoise are competing in a footrace in the Achilles and the Tortoise dilemma. Achilles, for 

instance, gives the turtle a 100-meter head start. Achilles will reach the tortoise's starting place 

after a limited amount of time if we assume that each racer starts running at a constant speed 

(one very fast and one very slow). The tortoise has only travelled a significantly shorter distance 

during this time—say let's 10 metres. Achilles will then need additional time to go that distance, 

by which point the tortoise will have advanced farther. Additionally, more time will be needed 

to arrive at this third location as the tortoise continues to move forward. Achilles always has 

further to go after passing where the tortoise has been. Achilles can never catch up to the 

tortoise because there are an unlimited number of spots he must travel to where it has already 

been. This falls under the category of a motion paradox. 

 

Lazy-bones Paradox 

Isn't it pointless, for instance, to visit a doctor if destiny has a master plan that details everything 

that will occur? If I am ill and it is in my nature to get better, then whether or not I see a doctor, 

I will get better. A doctor cannot help me if it is my destiny to never recover my health. How 

could you contest the viewpoint that was expressed? 

 

The Law Professor and his alumnus 

A Greek teacher gave his pupils legal training. However, he only requested payment from a 

student after winning his first case. One pupil never took up a case after quitting the teacher. 
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In the end, the lawyer filed a lawsuit against the student, claiming that if the judge ruled in her 

favour, she should be reimbursed for her legal fees. If the judge rules in my student's favour, 

he will have won his first lawsuit and will be required to pay my legal expenses. If the judge 

rules in my favour, I won't be required to pay fees, the student contended. If it rejects my 

arguments, I will have lost my first lawsuit and won't be required to pay any fees moving 

forward. 

Who is correct? 
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UNIT 3: HISTORICAL DEVELOPMENT OF MATHEMATICS 

 

The concepts axioms, operations, algorithms, proofs, conjectures, theorems, and antinomies 

were covered in detail in unit 2 of the course. We are all aware with the process in which 

guesses or conjectures are tested and retested in order to produce mathematical proofs that 

produce mathematical theorems. This lesson will teach us about the development of numeration 

and number systems throughout history. 

 

The Pythagorean universe was dominated by numbers. Integers and natural numbers held sway 

throughout this time. The world was still governed by numbers. The natural numbers are the 

foundation of all mathematics. Children are aware of object-related numbers. Numbers written 

as symbols are referred to as numerals. 

 

Every culture created its own concepts of number. Long before recorded history began, the 

idea of numbers and the practise of counting were already well-established. The first 

mathematical activity was counting. Even in the most prehistoric eras, man had some 

understanding of numbers. They could at least roughly track when objects were added to or 

removed from a group. Later, it became crucial to know how many people were in a family, 

how many flocks one possessed, etc. With the use of fingers, notches in wood, scratches on 

stones, and knots in strings, rudimentary tally methods based on the one-to-one correspondence 

concept are likely where counting first originated. Later, a word tally against the number of 

items in a small group was established as a vocal sound. These numbers eventually developed 

a variety of symbols. For instance, there are numerous ways to write the number six, including 

6, VI, six, , etc. 

 

These symbols all stand for the same idea, despite their differences. Numbers are the symbols 

used to symbolise the idea of "sixness," also known as a concept or idea. It took a long time to 

achieve the abstraction of a common feature of "sixness," represented by some sound, when 

viewed separately from any specific associations. We may now feel as though we have 

forgotten the connection between sets of concrete objects and the number words. We have a 

variety of historical systems, including those used by the Egyptians, Babylonians, American 

Indians, the Vigesimal scale (based on 20), and the highly advanced Mayans. Gaelic, Danish, 

Welsh, Greenlandic, Roman, and Hindu-Arabic numeral systems all have traces of it. 

 

Learning outcomes 

You should be able to: 

1. explain numbers and numeration systems by the end of the unit. 

2. describe the key characteristics of the Egyptian numbering system; 

3. describe the key characteristics of the Babylonian numbering system; 

4. describe the key characteristics of the Roman and Hindu-Arabic numbering systems; 

5. identify and explain the fundamental characteristics of natural numbers; 

6. differentiate between the various Pythagorean (and figurative) numbers; and  

7. describe some characteristics of integers. 
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SESSION 1: NUMBER AND NUMERATION SYSTEMS 

 

We will explain numbers and the numeration system in this session, as well as how they are 

used in mathematics instruction. In the teaching and learning of mathematics, it is intended that 

students would be able to use their understanding of number and numeration. 

 

Learning outcomes 

The participant will be able to: 

By the end of the session, the participant will be able to: 

1. explain number and numeration system 

2. explain the relationship between number and numerals 

3. apply the concept of numeration system in the teaching and learning of 

mathematics 

 

The natural numbers are the foundation of all mathematics. Every culture created its own 

concepts of number. Long before recorded history began, the idea of numbers and the practise 

of counting were already well-established. The first mathematical activity was counting. Man 

had some understanding of numbers even in the most prehistoric ages. At least they were able 

to roughly indicate when things were added to or removed from the group. Knowing how many 

people made up a family, how many flocks someone possessed, etc., became crucial later on. 

With the use of fingers, notches in wood, scratches on stones, and knots in strings, rudimentary 

tally methods based on the one-to-one correspondence concept are likely where counting first 

emerged. Later, a word tally against the number of items in a small group was established as a 

vocal sound. These numbers eventually developed a variety of symbols. For instance, there are 

numerous ways to write the number seven, including 7. VII, //// //, etc. 

 

These symbols all stand for the same idea, despite their differences. The written symbols used 

to symbolise the concept of "sevenness," also known as a number, are the numerals. It took a 

long time to achieve the abstraction of a general attribute of "sevenness," represented by any 

sound, when viewed separately from any concrete associations. We may now feel as though 

we have forgotten the connection between sets of concrete objects and the number words. 

 

A numeration system is a collection of numerals that has been systematically arranged. A 

numeration system consists of a collection of fundamental symbols and a set of rules for 

generating additional symbols from them. One of the greatest human achievements was the 

development of a practical system that allowed us to pass on knowledge from one generation 

to the next. The development of symbolic representation takes many years. There will 

undoubtedly be more numeration systems created in the future. 

 

As a "simple grouping system," the written numeration system was first developed. By 

organising the numbers into practical core categories, the counting process had to be 

systematised as it became more broad. The size of the group was decided by the matching 

method used. Names were given to the numerals 1, 2, 3,..., b after a base (radix or scale) of 

some number, b, was chosen. The names for numbers greater than b were then created by 
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combining the names of the smaller numbers. The majority of early number systems were based 

on the fingers of one or both hands, as seen by the prevalence of the numbers 5 and 10 in 

modern number systems. Thus, according to philologists, the number 11 is "ein lifon," which 

means "one left over" or "one over ten," the number 12 is "twe lif," which means "two over 

ten," the number 13 is "three and ten," etc., the number 20 is "twe-tig," which is two tens, the 

number 21 is "two tens," and the number one and 100 denotes ten times ten. 

 

Numerous ancient numeration systems have been preserved, including those used by the 

Egyptians, the Babylonians, the Mayans, the Romans, the Vigesimal scale (based on 20), the 

American Indians, and the Romans. Traces of these systems can also be found in Gaelic, 

Danish, Welsh, and Greenlandic. 

 

Key ideas 

Key I 

• Counting probably started with simple tally method on the principle of one-to-one 

correspondence- use of fingers, notches in woods, scratches on stones, knots in strings. 

• The concept or idea of "sevenness" is called a number, the written symbols used to represent 

the concept are the numerals. 

• A numeration system is a set of basic symbols and some rules for making other symbols from 

them 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of number and numeration system in the teaching and learning 

of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of number and numeration system equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

SESSION 2: EGYPTIAN NUMERATION SYSTEM 

In this session, we will focus on explaining Egyptian numeration system; as well as its 

applications in the teaching and learning of mathematics. It is hoped that learners would be 

able to apply their concepts of Egyptian numeration system in the teaching and learning of 

mathematics. 
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Learning outcomes 

By the end of the session, the participant will be able to explain the: 

1. Egyptian numeration system 

2. two primary sources of Egyptian numeration system 

The Egyptians were one of the first cultures to be known to use numerals. By the time of the 

first dynasty, or around 2850 BC, the Egyptians had such a system in place. The ancient writing 

system known as hieroglyphics used by the Egyptians included symbols for mathematics. The 

Egyptians employed mathematics in a wide range of applications, including the use of 

astronomy to calculate dates for religious celebrations and to forecast the yearly flooding of 

the Nile. 

 

Egyptian mathematics can be found in two primary sources and numerous secondary sources. 

The Rhind (or Ahmes) Papyrus and the Moscow Papyrus are the principal sources, and together 

they offer 112 real-world math and geometry problems and their solutions. Three papyri from 

around 1800 BC are among the secondary sources: the Egyptian Mathematical Leather Roll 

(which contains a table of 26 decompositions of unit fractions), the Berlin Papyrus (which 

contains two problems of simultaneous equations, one of which is of the second degree), and 

the Reisner Papyrus (volume calculations). 

 

The main source of our knowledge of ancient Egyptian mathematics is the Rhind Mathematical 

Papyrus (RMP), also known as the Ahmes Papyrus. It is an excellent illustration of Egyptian 

mathematics. It bears the name of Scottish antiquarian Alexander Henry Rhind, who bought 

the papyrus in Luxor, Egypt, in 1858. It was reportedly discovered during unauthorised 

excavations inside or close to the Ramesseum. It was created in 1650 BC. The majority of the 

papyrus is currently housed in the British Museum, which purchased it in 1864. 

 

The Rhind Mathematical Papyrus was produced in Egypt during the Second Intermediate 

Period. The scribe Ahmes copied it from a now-lost manuscript from King Amenenhat III's 

reign (12th dynasty). This text, which is nearly 5 metres long in total and is written in the 

hieratic script, is 33 cm tall. 

 

The Rhind papyrus' first section is made up of reference tables and a set of 20 math and 20 

algebraic puzzles. Simple fractional expressions are used to begin the problems, which are then 

followed by completion (sekhem) issues and more complex linear equations (aha problems). 

The Rhind papyrus' second section is made up of "mensuration problems," which are 

geometrical puzzles. The Moscow Mathematical Papyrus is older than the Rhind Papyrus, but 

the former is larger. 

 

The Golenischev Mathematical Papyrus, often known as the Moscow Mathematics Papyrus 

(MMI), was copied by an unidentified scribe (-1850 BC). About 25 practical mathematics 

problems (basic equations) and their solutions can be found in the Moscow papyrus. V S. 

Golenishchev (d. 1947) bought it and sold it to the Moscow Museum of Fine Art. It is 3 inches 

broad and 15 feet long. Problem 14 dealt with a frustum's volume. One is instructed by the 
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scribe to square the numbers two and four and to add the product of those squares to the total 

of those squares. Multiply this by the sixth-third power. Verify the number is 56. 

Like the modern system, the Egyptian numbering system was similarly based on units of 10, 

but rather than using a number's position to determine its value, the Egyptians employed 

various images to symbolise various units of 10. The hieroglyphic symbols for 1, 10, 100, 1000, 

10,000, 100,000, and one million: 

 
 

The Egyptian system was based on the simple grouping system. Their symbols were used 

additively to express any number. Each symbol is repeated the required number times, but no 

more than nine repetitions. For example, 432 was written as ɘɘɘɘՈՈՈII or ɘՈɘՈIIՈɘɘ or 

ՈIɘɘՈɘIՈɘ 

 

It was simply based upon addition. They just needed to add up the numbers represented by the 

symbols. The position of the individual symbols is not important. 

 

The system was not a place value system. It had no symbol for zero. The Egyptians did 

repetitive type of arithmetic. They performed addition and subtraction by repeating the symbol 

and by regrouping. Eg. 

 

ɘՈՈՈՈIIIIIIIII +   ɘɘɘɘՈՈՈII 

                         = ɘɘɘɘɘՈՈՈՈՈՈՈՈI 

Key ideas 

Key I 

• Egyptian mathematics symbols were part of their ancient writing system called hieroglyphics 

• There are two primary sources and a number of secondary sources on Egyptian Mathematics. 

• The Rhind Mathematical Papyrus (RMP) which is also known as the Ahmes Papyrus, is the 

major source of our knowledge of the mathematics of ancient Egypt 

• Moscow Mathematics Papyrus (MMI), also known as the Golenischev Mathematical Papyrus 

was copied by an unknown scribe (-1850 BC) 

 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of Egyptian numeration system in the teaching and learning of 

mathematics?  
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• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of Egyptian  numeration system equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

SESSION 3: BABYLONIAN NUMERATION SYSTEM  

In this session, we will focus on explaining Babylonian numeration system; as well as its 

applications in the teaching and learning of mathematics. It is hoped that learners would be 

able to apply their concepts of Babylonian numeration system in the teaching and learning of 

mathematics. 

Learning outcomes 

By the end of the session, the participant will be able to: 

3. explain Babylonian numeration system 

4. explain the two primary sources of Egyptian numeration system 

The ancient Mesopotamian (Babylonian) numeration system was distinct from the Egyptian 

system in a number of ways. The Babylonians adopted a considerably more practical 

positioning system than the Egyptians, who used a straightforward grouping system. 

Cuneiform, a well-preserved style of writing on clay tablets that is less artistic and uses wedge-

shaped markings, was utilised by the Babylonians. Only two wedge-shaped characters, dating 

to around 3000 BC, were used.  

Which are:⥾  for 1 (one),    ⥽   for 10 (ten) 

 

Thus 24 is written as ⥽   ⥾⥾⥾⥾ 

The system is repetitive from 1 through 59. Here, the position of the symbols was important. 

The symbol for ten must appear to the left of any ones to represent numbers less than 60. For 

numbers larger than 60, the symbol for ten and the symbol for one are to the left of symbol for 

ten, and any symbol to the left of the symbol for ten have a value 60 times their original value. 

For example, 

⥾⥾⥾   ⥽⥽   ⥾⥾⥾⥾⥾ = 3(60) + 25 = 180 + 25 = 205 

⥾⥾  ⥽⥽⥽⥽   ⥾⥾⥾⥾⥾⥾ = 2(60) + 46 = 120 + 46 = 166 

⥽⥽⥾⥾⥾⥽⥽⥽⥽⥾⥾⥾⥾⥾  

= 23(60) + 45 = 1380 + 45 = 1,425.   

 

Sexagesimal system is another name for the Babylonian system. Since numbers are written 

using a straightforward grouping scheme within each of the fundamental 60 groups, it is not 
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entirely positional. It lacked the sixty various symbols. There were several uncertainties since 

they lacked a symbol for zero. The Babylonians went one step farther and covered any number 

to the left of the second group of 60 by covering 602. When measuring time in minutes and 

seconds, the system is still in use. 

 

Key ideas 

Key I 

• The Babylonian numeration system is also called sexagesimal system  

• There are two primary sources and a number of secondary sources on Egyptian Mathematics. 

• The Babylonians used a well-preserved and less pictorial clay tablet writing using wedge-

shaped marks known as cuneiform  

• They employed only two wedge-shaped characters, which date from about 3000BC 

• Babylonian numeration system is repetitive from 1 through 59 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of Babylonian numeration system in the teaching and learning 

of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of Babylonian numeration system equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 4: ROMAN NUMERATION SYSTEM 

 

In this session, we will focus on explaining Roman numeration system; as well as its 

applications in the teaching and learning of mathematics. It is hoped that learners would be 

able to apply their concepts of Roman numeration system in the teaching and learning of 

mathematics. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain Roman numeration system 

2. explain the two primary sources of Roman numeration system 
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The Roman numeration system used the following basic symbols I for one (1), 'X' for ten (10), 

'C for hundred (100), and 'M', for one thousand (1000). These are augmented by 'V' for 5, 'L' 

for 50, and 'D' for 500. The principle of subtraction is used in a way that does not require an 

additional symbol. When a smaller unit is placed before a symbol for a larger unit, it means the 

difference of the two units. This shows the subtractive principle. For example, we have IV for 

4; IX for 9; XL for 40; XC for 90; CM for 900. Thus, 99 may be written as XCIX in Roman 

numerals and 1944 MDCCCCXXXXIIII in ancient times, but now MCMXLIV. This means 

that representation of a number in Roman Numeration is not unique. 

 

The Romans achieved nothing of importance in mathematics. Roman numerals, which were 

difficult to calculate with, served as the foundation for the Roman numeration system. Despite 

this shortcoming, some European nations used the Roman numeration method for bookkeeping 

for another century and until as late as 1600. It is still mostly used on title pages and 

monuments. 

 

Key ideas 

Key I 

• Roman numeration system used the following basic symbols I for one (1), 'X' for ten (10), 'C 

for hundred (100), and 'M', for one thousand (1000).  

• Roman numeration system is augmented by 'V' for 5, 'L' for 50, and 'D' for 500 

• A smaller unit placed before a symbol for a larger unit, means the difference of the two units. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of Roman numeration system in the teaching and learning of 

mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of Roman numeration system equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  
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SESSION 5: HINDU-ARABIC NUMERATION SYSTEM  

 

In this session, we will focus on explaining Hindu-Arabic numeration system; as well as its 

applications in the teaching and learning of mathematics. It is hoped that learners would be 

able to apply their concepts of Hindu-Arabic numeration system in the teaching and learning 

of mathematics. 

 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain Hindu-Arabic numeration system 

2. explain the two primary sources of Hindu-Arabic numeration system 

 

Ten symbols make up the Hindu-Arabic numeration system (may be because we have ten 

fingers). These are: 0, 1, 2, 3,,,,,,,,,,,, These figurines' earliest known incarnations are said to 

have come from India around 300 BC. It may have been created by Hindus and spread to 

Western Europe by Arabs. The earliest surviving examples of the numbers were discovered on 

some stone columns built in India by King Asoka around 250 BC. The zero was not present in 

the ancient numerals; it probably came from Babylon through Greece and India. Indians are 

credited as being the first people to understand that zero is both an integer and a placeholder. 

The zero symbol and the concept of the positional system had reached Baghdad by 750 AD 

and had been translated into Arabic. Such a finished Hindu system was detailed in a text written 

in 825 AD by the Persian mathematician al-Khowarizmi. 

 

In the 18th century, it is known that these numerals travelled from Spain to Europe. The first 

academic in Europe to instruct these numerals was Gerbert (after known as Pope Sylvester II), 

who studied in Spain. These numerals are known as Hindu-Arabic numerals due to their origin. 

It also goes by the name decimal numeration system due to the use of 10 fundamental symbols. 

The system was introduced to Europe by the Arab mathematician al-Khowarizmi in a treatise 

titled "Liber Algorisms de Numero Indorum." 

 

The system's introduction was not without criticism. The "Algorists," who supported the 

system, and the "Abacists," who supported the status quo—using Roman numerals and 

performing calculations on an abacus—were the two opposing factions. This 400-year conflict 

between the Algorists and the Abacists took place. The Roman Catholic Church supported the 

abaconists. Roman numerals, they claimed, were simpler to write, memorise, add to, and 

subtract from than Hindu-Arabic numerals. The Chinese suan pan and the Japanese soroban 

are two highly developed abacus types still in use today. 

 

However, the Hindu-Arabic system has lasted ever since because:  

(a) It uses ten symbols only; 

 

(b) Larger numbers are expressed in terms of powers of ten; there is no limit to the size of the 

numbers that can be written using only the digits from 0 through 9. 

 (c) It is positional. 
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For positional systems, after the base b has been selected, basic symbols called digits are 

adopted for 0, 1, 2, 3, -- b-1. Thus, a number A can be written uniquely in the form 

 

A=anb
n+an-1b

n-1+an-2b
n-2+…...+a2b

2 +a1b
1 +a0,  

where 0 < a <b, i=0, 1, 2..., n.  

Thus, the number A in the base b can be represented by the sequence of basic symbols: anan-

1an-2an-3…. a2a1a0. 

 

For example, 7354 in base ten is written (7 x 103) + (3 × 102) + (5 x 10) + 4. 

 

A number written in this form is said to be in the expanded form. Thus, in the number 7354, 

the 7 stands for 7(1000), 3 for 3(100), 5 for 5(10) and 4 for 4(1). 

 

The symbol for zero is used to indicate any missing powers of the base. Obviously, the symbol 

for zero become a great convenience in the positional numeration system. The positional 

numeration system is a logical outgrowth of the multiplicative grouping system. 

 

A period called 'decimal point in the decimal system is used to separate the fractional parts 

from the whole number part. E.g., 8537. 453 may be expanded as 857.453 − 800 + 50 + 7 +

0.4 0.05 + 0.003 

That is, 857.453 = 800 + 50 + 7 +  0.4 + 0.05 + 0.003 

Thus, 857.453 = (8𝑥102) + (5𝑥10) + (7𝑥1) + (4𝑥10 − 1) + (5 × 10 − 1) +  (3 × 10 −

3) 

 

Other Bases 

If the base is less than 10 (𝑏 <  10), we may use our ordinary base ten digits. For example, we 

may express 6543 in base seven using the basic symbols 0, 1, 2, 3, 4, 5 and 6 and write it as 

6543seven. To convert this number to base ten we expand and simplify. 

 

That is, 6543𝑒𝑣𝑒𝑛 =  6(73) + 5(72) + 4(7) + 3 = 2,334𝑡𝑒𝑛. If the base is greater than 

10 (𝑏 > 10), we need to augment our digit symbols by some new basic ones. Thus, for b = 12 

we have 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t, e for our basic symbols where t and e stand for ten and 

eleven respectively.  

Thus (5t4e)eleven can be expressed as: 

 

(514𝑒)𝑡𝑤𝑒𝑙𝑣𝑒 =  (5𝑥123)  +  (𝑡 𝑥 122)  +  (4 ×  121)  +  (𝑒 𝑥 120) 

 

                   = (5𝑥1728) +  (10𝑥144)  +  (4 ×  12) (11 ×  1) 

                   =  8640 + 1440 + 48 +  11  

                   = 10,139 
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Base 12 system is also called duodecimal system. 

In general, changing from base ten (ordinary scale) to a base b follows the following process: 

Let N be the number. Then, N=anan-1an-2an-3….a2a1a0. 

We then determine the integers 

an,an-1,an-2,an-3,….a2,a1,a0,in the expression: 

N=anb
n+an-1b

n-1+an-2b
n-2+an-3b

n-2+….+a2b
2+a1b

1+a0. 

Where 0≤ai˂b 

 

We then divide this polynomial repeatedly by the base, b, and note the remainders. Dividing N 

by the base b we have   

 
𝑁

𝑏
=anb

n-1+an-1b
n-2+an-2b

n-3+…..+a2b+a1+
𝑎0

𝑏
 

The remainder, a0  of this division becomes the last digit in the desired representation. Dividing 

N* by b, we have 

 
𝑁∗

𝑏
=anb

n-2+an-1b
n-3+an-2b

n-4+an-3b
n-5+……+a2+

𝑎1

 𝑏
 = N**+

𝑎1

𝑏
 

 

and the remainder, a1 becomes the next to the last digit in the desired representation. This 

procedure continues successively to obtain all the digits a0,a1,a2,…… This is systematized as 

in the specific example in expressing 497 as a base five numeral, 

5 divides 497 Remainder 

5 divides 99 2 

5 divides 19 4 

5 divides 3 4 

5 divides 0 3 

 

 

We write the remainders, starting from the last one. This yields the result 497=3442five. 

 

OR, 497 = 5 𝑥 99 + 2 

99 = 5 𝑥 19 + 4 

19 = 5 × 3 + 4  

3 = 5 × 0 + 3 

 

 

Key ideas 

Key I 

• Hindu -Arabic numeration system uses ten symbols  

• Hindu -Arabic numeration system is also called decimal numeration system because ten basic 

symbols are used. 
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Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of Hindu-Arabic numeration system in the teaching and 

learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of Hindu-Arabic numeration system equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

 

SESSION 6: BASIC PROPERTIES OF NATURAL NUMBERS 

 

In this session, we will focus on explaining Hindu-Arabic numeration system; as well as its 

applications in the teaching and learning of mathematics. It is hoped that learners would be 

able to apply their concepts of Hindu-Arabic numeration system in the teaching and learning 

of mathematics. 

 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain the properties of binary operations 

2. explain the very types of numbers 

3. apply the concepts of primary factorization 

4. Explain integers  

 

1. Closure Property for addition and multiplication: When we add (or multiply) any two 

natural numbers we will obtain a natural number. That is, if a, b ε N then a + b=c ε N and a x 

b =k ε N. 

 

2. Property of Order 

 

a) The Commutative Property for addition states that the order in which two numbers are 

added makes no difference. 𝐿𝑒 𝑎 + 𝑏 = 𝑏 + 𝑎; 𝑎, 𝑏𝑒 𝑁. (To travel back and forth from home 

to work). 

 

The Commutative property for multiplication states that the order in which two numbers are 

multiplied 
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makes no difference. a x b = b x a, a, b ε N. (Three groups of five oranges give the same result 

as five groups of three oranges). 

 

b) The Associative Property: The order of adding or multiplying three or more numbers does 

not affect the result. In adding three or more numbers, the associative property states that no 

matter which two numbers are added first, the final result is the same. i.e (𝑎 +  𝑏) + 𝑐 =  𝑎 +

 (𝑏 +  𝑐) 𝑎 +  𝑏 +  𝑐.. In multiplying three or more numbers, the associative property states 

that no matter which two numbers are multiplied first, the final result is the same. That is. 

(𝑎 𝑥 𝑏) 𝑥 𝑐 = 𝑎 𝑥 (𝑏 𝑥 𝑐) =  𝑎 𝑥 𝑏 𝑥 𝑐 

The associative property allows us to group numbers for addition and multiplication. The 

parentheses indicate the numbers to be added or multiplied first. 

 

3. Distributive Property of Multiplication over Addition and Subtraction 

Suppose there are 9 families each having 3 males and 4 females. There are two ways of finding 

the total number of people in all the six families. 

Method 1: First, find the total number of males and the total number of females in the 9 families 

separately and then later add the two results. This gives (9 x 3) males + (9 x 4) females. That 

is, 27 + 36 =  63, giving 63 people in all. 

Method 2: First, find the total number of people in each family and then add all. 

Each family has (3 + 4) people and for the 9 families we have 9 ×  (3 + 4)  =  9𝑥7 = 63. 

Since the two results are the same we can conclude that: 9 𝑥 (3 + 4)  = (9 ×  3)  + (9 ×  4) 

The Distributive property states that for any 𝑎, 𝑏, 𝑐 Є 𝑁, 𝑎 𝑥 (𝑏 +  𝑐) = (𝑎 𝑥 𝑏) + (𝑎 𝑥 𝑐) 

Or, 𝑎 𝑥 (𝑏 + 𝑐) = (𝑎𝑏) + (𝑎𝑐), and  

𝑎 𝑥(𝑏 − 𝑐)  =  (𝑎 𝑥 𝑏) − (𝑎 𝑥 𝑐) 𝑂𝑟, 𝑎 𝑥 (𝑏 − 𝑐)  =  (𝑎𝑏) − (𝑎𝑐) 

 

The Distributive property allows us to simplify arithmetic such as: 

 

9 𝑥 73 –  9 𝑥 (70 +  3)  =  (9 𝑥 70)  +  (9 𝑥 3)  =  630 +  27 = 657. 

 

Or, as 

 9 𝑥 73 − 9 𝑥 (80 − 7)  =  (9𝑥80)  −  (9𝑥7) = 720 − 63 − 657 

 

 

Odd and Even Numbers 

The set of natural numbers can be split into two categories, even and odd. 

 

Even numbers are at every other position in the sequence of natural numbers. They leave no 

remainder when divided by 2. These are: 2, 4, 6, 8,... Counters/objects representing these 

numbers can be put into pairs. 

 

Odd numbers start from the first natural number and every other number in the sequence. 

They leave a remainder of 1 when divided by the first even number, 2. These are 1, 3, 5, 7, 

Counters/objects representing these numbers cannot be put into pairs. 
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Prime and Composite Numbers  

Every counting number greater than 1 has at least two distinct divisors, itself and one. 

Classifying the counting numbers according to the number of divisors each has leads to the 

following definition: 

 

A prime number is a counting number that has exactly two divisors. Any positive integer 

greater than 1 which has no factors apart from 1 and itself is a prime number. The counting 

numbers that have more than 2 divisors are called composite numbers. One is neither a prime 

nor a composite number, why? Try to explain. 

 

The sequence of prime numbers is 2, 3, 5, 7, 11, 13, 17, 19,... Only the first prime number is 

even, all others are odd. The sequence is highly irregular and there is no iterative method for 

producing the next in the sequence. 

 

Eratosthenes' Method of Finding Prime Numbers 

 

A Greek Mathematician named Eratosthenes first used a technique called the Sieve of 

Eratosthenes (more than 2000 years ago) to find the prime numbers smaller than some given 

number. That is, a method for removing the composite numbers from the set of natural 

numbers, leaving the prime numbers. The process is as follows:  

1. List all the counting numbers up to the given number, say 100 

2. Cross out 1, since it is not classified as a prime 

3. Draw a circle around 2, the smallest prime number. Cross out every following multiple of 2. 

4. Draw a circle around 3, the next prime number. Then cross out each succeeding multiple of 

3.  

5. Circle around the next open number, 5 and cross out all 

 

subsequent multiples of 5.  

6. Circle around the next open number, 7 and cross out all subsequent multiples of 7.Since 7 is 

the largest prime number less than 100, we end the process and list all numbers left as prime 

numbers In general, to find the prime numbers less than a natural number N. 

 

• Find the largest prime less than or equal to √𝑁 

 

• Cross out the multiples of primes less than or equal to √𝑁 

 

• All the remaining numbers in the chart are prime numbers. 

 

Prime twins (or twin primes) are pairs of consecutive odd numbers that are primes and differ 

by 2. Examples are 3 & 5,5 & 7, 11 & 13, 17 & 19, 29 & 31, etc. The largest known twin 

primes were 1,000,000,009,649 & 1,000,000,009,651 found in 1986. 

A prime triplet is a set of three prime numbers that differ by 2. The only known set is 3, 5 & 

7 
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3.3 Application of Prime Factorization 

 

Every composite natural number can be expressed as a product of primes. Except for the order 

of the factors, this expression is unique. For example, 

 12 = 2×2×3 = 22 × 3;                  54 = 2×3×3×3 = 2×33  

 Prime numbers form the building block of natural numbers. That is, Z= a1a2a3….a;  

where a is a prime, k= 1, 2, 3,..... 

 

The Highest Common Factor (HCF) or the Greatest Common Divisor (GCD) of two or more 

given natural numbers is the greatest number which is a factor of the given numbers. 

 A      To find the HCF of numbers: 

 

1 Find the prime factorization of each number. 

2 Write it in canonical (index) form. 

 

3 Choose the representative of each factor with the smallest exponent. 

 

4 Take the product of the representatives as the HCF. 

 

Example 1 

 

Find the HCF of 96 and 300 

 

Solution 

 

96 = 2×2×2×2×2x3 = 22 x 3 

 

300 = 2×2×3×5x5 = 22 x3x52 

 

 

Representatives with the smallest exponent: 2 2 x 3. The product of 22 x 3 is 12. Therefore, 

HCF of 96 and 300 is 12. 

Thus 12 is the highest number that can divide 108 and 300. The greatest number which is a 

factor of 108 and 300 is 12. Lowest Common Multiple (LCM) of two or more natural numbers 

is the smallest number into which the given numbers can divide i.e. the least number that is 

divisible by the given numbers. 

To find the LCM of numbers: 

 1 Find the prime factorization of each number. 

 2 Write it in canonical (index) form. 

  3 Choose the representative of each factor with the greatest exponent. 

4 Take the product of the representatives as the LCM. 
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Example 2 

Find the LCM of 96 and 300. 

Solution 

 

96 = 2×2×2×2×2x3 = 25 x 3 

 300 = 2×2×3×5x5 = 22 × 3 × 52 

Representatives with the highest exponent: 25 x 3 x 52. 

The product of 25 x 3 x 32 is 2400. 

Therefore, LCM of 96 and 300 is 2,400. 

 Thus 2,400 is the smallest number that 96 and 300 can divide. 

 

3.4 Integers 

The primitive agricultural-type society needed only the natural numbers N={1, 2, 3, 4,} When 

zero was discovered and annexed to the set of natural numbers we have the set of Whole 

numbers, W={0, 1, 2, 3, 4,}. This satisfied society for several thousands of years. Bookkeeping 

later advanced as society evolved and problems such as 3-5-2 arose which could not be solved 

using the whole numbers only. The opposites of the natural numbers were introduced and 

annexed to the set of whole numbers to obtain the set of integers, Z = -3, -2, -1, 0, 1, 2,3,) 

 

The negative numbers were developed quite late. The Chinese had some knowledge of negative 

numbers as early as 200BC and in the 7th Century AD the Hindu Brahmagupta stated the rules 

for operations with positive and negative numbers. Chinese represented negative numbers by 

putting them in red (compare with the present day accounting). The Hindus represented them 

by putting a circle or dot over the number. However, as late as the 16th century, some European 

scholars were referring to numbers such as (zero minus one (0 - 1) as "absurd". In 1545, an 

Italian scholar, Cardano, in presenting a paper on the elementary properties of negative 

numbers referred to integers as "fictitious numbers". The positive numbers he referred to as 

"true" numbers. The word integer was derived from "numbers with integrity" 

 

Note all integers (except zero) consist of two parts - the signed part and the whole number part. 

An absolute value gives the numerical value of a quantity independent of direction or sign. The 

absolute value of x is its undirected distance from zero (on the number line). We use the symbol 

ꟾxꟾ; and ꟾxꟾ=-x, when x is negative or ꟾxꟾ when x is positive. 

 

Multiplication of Integers.  

We can demonstrate practically that a x b = ab and that -a x b = ab and that -a x b = -ab; 

interpreting multiplication as repeated addition. We can develop multiplication of two 

negative numbers from these two facts. 

 

Example: 

 

-3 x 5 = -15      -4 x 5 = -20           -5 x 5 = -25 

-3 x 4 = -12      -4 x 4 = -16           -5 x 4 = -20 

-3 x 3 = -9        -4 x 3 = -12            -5 x 3 = -15 
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Pause and ponder!!!!! Can you predict the next lines? 

-3 x 2 = -6          -4 x 2 = -8      -5 x 2 = -10 

-3 x 1 = -3           -4 x 1 = -4      -5 x 1 = -5 

-3 x 0 = 0            -4 x 0 = 0         -5 x 0 = -5 

-3 x -1 = 3           -4 x -1 = 4       -5 x -1 = 5 

-3 x -2 = 6            -4 x -2 = 8      -5 x -2 = -10 

…………                    ………….           ………… 

 

Observe from the pattern that in the first case the second factor decreases by 1 from 5 to 0 while 

the product consistently increases by 5 from -25 to 0. Following the pattern, we should expect 

the next second factor to be -1 and the next product to be 5 more than zero and so should be 5, 

giving -5x-1=5 indicating a product of two negative numbers yielding a positive number. The 

next product. -5 x -2= 10 also yielded a positive number. 

Observing the pattern in the remaining two cases for -3 x -1 =3 and -4 x -1 = 4 supports the 

conclusion that the product of two negative integers gives a positive integer. In general, we say 

that -a x -b = ab, where a and b are integers. 

 

3.5 Pythagoreans 

The Pythagoreans studied numbers for various purposes. The inherent union between geometry 

and arithmetic became clear when the Pythagoreans discovered the theorem - in any right 

triangle, the sum of the squares built on the legs is equal to the square built on the hypotenuse. 

This gave birth to what is often called the Pythagorean triplets, some examples of which are 

(3, 4, 5), (5, 12, 13), and (7, 24, 25). These triplets satisfy the theorem stated about the length 

of sides of a right-angled triangle. The special case of an isosceles right-angled triangle with 

the length of legs being unity (1) gives rise to the non-existence of the square root of 2 (12) 

among rational numbers and hence illustrating irrational numbers. 

 

One other reason why the Pythagoreans studied numbers was to find certain mystical properties 

in them. They called the odd numbers as "masculine" numbers and the even numbers as 

"feminine" numbers. They also referred to some numbers as amicable, deficient, perfect and 

abundant numbers. 

 

Perfect Numbers: A Perfect number is a counting number that is equal to the sum of all its 

divisors that are less than the number itself. The divisors of a number that are less than the 

number itself are called proper divisors. For example, the proper divisors of 6 are 1, 2 and 3 

and 1+ 2+3=6. Since the sum of the proper divisors of 6 is 6, we say 6 is a perfect number. 

Equivalently, a perfect number is a number that is half the sum of all of its positive divisors 

excluding the number itself. 

 

Perfect numbers are rare and until recently only few had been found. Verify that 28 and 240 

are perfect numbers and find some more. All even numbers that are perfect numbers are of the 

form 2(p-1)(2p-1), where p and (2p-1) are prime numbers. It is not known yet if an odd one exists. 

The 27th perfect number is 244,496(244,497- 1). It has 25,000 digits. 
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Abundant Numbers: An Abundant number has the sum of its proper divisors greater than 

the number itself. For instance, 24 is an abundant number because the proper divisors are 1, 2, 

3, 4, 6 and 12 and the sum of these divisors is 36 which is greater than 24. 

 

Deficient Numbers: If the sum of the proper divisors of a given number is less than the 

number, the number is said to be deficient. The number 8 has proper divisors 1, 2 and 4 and 

the sum is 7 which is less than 8. Therefore, 8 is a deficient number. 

 

Amicable or Friendly Numbers: Two numbers are said to be amicable or friendly if each is 

the sum of the proper divisors of the other. They were used as friendly charms, in astrology 

and sorcery. For example, 220 and 284 are friendly numbers because, Proper divisors of 220 

are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 with sum 284 Proper divisors of 284 are 1, 2, 4, 71, 

142 with sum 220. 

 

In 1636, Fermat discovered the pair, 17,296 & 18,416. Check to verify. 

Find some more. 

 

Polite numbers: Polite numbers are natural numbers that can be expresses as a sum of two or 

more consecutive natural numbers. Some examples are 9, 11, 18.  

Eg. 9 = 2+3+4 or 4+5;  11 = 5+ 6; and 18 = 3+4+5+6 or 18-5+6+7. 

 

Find some more. 

 

Other figurative numbers are: 

 

Square numbers - these are formed by arranging counters to form sides of squares. The 

numbers are 1, 4, 9, 16, ... They are numbers that have 2 equal factors. 

 

Triangular numbers - these are formed by arranging counters to form the sides of a triangle. 

The numbers are 1, 3,6,10,15, ... 

 

The relationship between square numbers and triangular numbers is that the sum of two 

consecutive triangular numbers gives a square number. E.g., 1+3-4 which is the 2 square 

number while 1 and 3 are the 1st and 2nd triangular numbers and 6 10 16 which is 4th square 

number while 6 and 10 are the 3rd and 4th triangular numbers 

Pentagonal numbers can be formed by arranging counters to form pentagons. The numbers 

are 1, 5, 12, 22, 35, 

 

3.6 Development of Algebra 

In mathematics, the word algebra is a structure or a set of axioms that form the basis for what 

is accepted and what is not, when manipulating symbols of that system The basic understanding 

of an algebra is slated to what is called a mathematical system. A mathematical system is a 

set with at least one defined operation and some developed properties 
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The word "algebra" is derived from the Arabic word "al- jabr" which means restoration or 

completion. Algebra is important because it is one of the largest, broadest and most relevant 

type of mathematics today. Algebra provides a generalization of arithmetic by using symbols, 

usually letters, to represent numbers. For example, it is obviously true that 2+3 = 3+2 

 

This arithmetic statement can be generalized using algebra to x + y = y + x, where x and y can 

be any number. 

 

Algebraic Equations 

An algebraic equation shows the relationship between two or more variables. The equation, A 

= πr2 states that the area (A) of a circle equals π (pi a constant) multiplied by the radius squared 

(r2). Given a particular value for A or r, the equation can be solved (a value can be found) for 

the other variable. Given another equation simultaneously true, for example, c = 2πr, we can 

substitute c/2π for r into the first equation. This gives a new equation, A = c2/4π. 

 

Algebra has been studied for many centuries. Babylonian and ancient Chinese and Egyptian 

mathematicians proposed and solved problems in words, that is, using "rhetorical algebra". 

However, it was not until the 3rd century that algebraic problems began to be considered in at 

form similar to those studied today. 

 

Whereas many Greeks made decisive advances in geometry, they were known to produce only 

one algebraist, Diophantus of Alexandria (250 A.D.). Diophantus used an abridged notation 

for frequently occurring operations, and a special symbol for the unknown. 

 

In the 3d century, the Greek mathematician Diophantus of Alexandria wrote his book 

Arithmetica. Of the 13 parts. originally written, only six still survive, but they provide. the 

earliest record of an attempt to use symbols to represent unknown quantities. Dioplantus did 

not consider general methods in Arithmetica, but instead solved a large number of practical 

problems. 

 

Besides being the first to use symbols systematically in algebra, Diophantus was also the first 

to give general rules for the solution of an equation. An example, in modern notation, 

 

8x – 11 - 2x + 5 = x – 4 + 3x + 10, 

 

Rearranged in the form; 

8x + 5 + 4x + 3x + 10 + 11 + 2x     or 

8x + 9 = 6x + 21. 

 

Diophantus then gives the following rule: "it will be necessary to subtract like from like on 

both sides, until one term is found equal to one term." What he meant was that one must subtract 

6x from 8x and 9 from 12, so that there is only one term on each side. 

 

Thus    8x - 6x = 21 - 9 
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                  2x = 12 

                     x=6 

 

Diophantus also had methods for solving simultaneous and quadratic equations. He did not 

recognise negative numbers, so he had to distinguish three cases for quadratics: 

 

1. ax² + bx = c 

 

2.  ar² = bx + c 

 

3.  ax² + c = bx 

 

where a, b, c >0. 

 Each of these cases had its own method of solution, which correspond to the following 

expressions. 

 

1.  X = 
√(

𝑏

2
)

2
+𝑎𝑐−

𝑏

2

𝑎
 

 

2.    x = 
√(

𝑏

2
)2+𝑎𝑐+𝑏/2

𝑎
 

 

3. x = 
√(

𝑏

2
)

2
−𝑎𝑐+

𝑏

2

𝑎
 

 

 

The fourth possible case ax² + bx + c = 0, (a, b, c > 0) does not occur in Diaphantus' work, 

since it never admits a positive solution. 

 

 

Diaphantusʹ name is today commemorated in the term "Diophantine equation” which is an 

equation for which only positive integer solutions are required. For example, x3 =2 + y2, as a 

Diophantine equation, only has the solution 

x=3, y=5. 

Three of the problems that Diophantus worked on in one of his books titled Arithmetica 

include 

 

1. Find two square numbers such that when one forms their product and adds either of the 

numbers to it, the result is a square number. 

 

2 Find three numbers such that their sum is a square number and the sum of any two of them 

is a square number. 

 3. Find two numbers such that their sum is equal to the sum of their cubes. 
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By number, Diophantus means "positive rational number" Several Indian mathematicians 

carried out important work in the field of algebra in the 6th and 7th centuries. These include 

Aryabhatta, whose book entitled Aryabhatta included work on linear and quadratic equations, 

and 

 

Brahmagupta, who presented a general solution for a quadratic equation. 

The next major development in the history of algebra was the book al-kitab al-muhtasar  fi  

hisab waʹl-muqabala ("compendium on calculation by completion and balancing), written by 

the Arabic mathematician Al- Kharza in the 9th century. This book developed method for 

solving six different types of quadratic equations, and contained the first systematic 

consideration of the subject. separately from number theory. 

 

In about 1100, the Persian mathematician Omar Khayyam wrote a treatise on algebra based on 

Euclid's methods. In it he identified 25 types of equations and made formal distinction between 

arithmetic and algebra. During the 12th century, Al-Khwarizmi's works were translated and 

become available to Western scholars. In the 13th century Leonardo Fibonacci wrote some 

important and influential books on algebra. 

 

Rules for solving cubic equations were discovered about 1515 by Scipione del Ferro (c.1465-

1526), and for the quartic equation by Ludovico Ferrari (1522-1565) about 1545. In 1824 Niels 

Henrik Abel (1802-1829) finally proved that, in general, it is not possible to give general rules 

of this kind for solving equations of the fifth degree or higher. 

 

Further contributions to the symbols used in algebra were made in the late 16th century and the 

17th century by Francois Viete (1540-1603) and René Descartes, who introduced modern 

notations (for example the use of ') and also showed that problems occurring in geometry can 

be expressed and solved in terms of algebra. Complex and negative roots were late discoveries, 

and took some time to become accepted. In 1799, Karl Friedrich Gauss proved the 

fundamental theorem of algebra, which had been proposed as early as 1629. 

 

 

The development of symbolic algebra went through three distinct stages namely: 

 

  a. Rhetorical algebra where equations are written in full sentences. For example, the modern                       

equation x+5=7 was written in rhetorical form "Something plus five equals seven" or 

"Something plus 5 equals 7" Rhetorical algebra was first developed by the ancient Babylonians 

and remained dominant up to the 16th century. 

 b. Syncopated algebra where some symbolism is used which does not contain all of the 

characteristics of symbolic algebra. For instance, there may be a restriction that subtraction 

may be used only once within one side of an equation, which is not the case in symbolic algebra. 

 

c. Symbolic algebra where full symbolism is used. Symbolic algebra was fully developed by 

Francois Viete (16th century). 
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Quadratic equations played an important role in early algebra; and throughout most of history. 

Until the early modern period, all quadratic equations were classified as belonging to one of 

three categories. 
 

i. x² + px = q 
 

ii. x² = px + q 
 

iii. x2+q = py, where p and q are positive. 

 

This trichotomy comes because quadratic equations of the form 0, with p and q positive, have 

no positive roots. There were four conceptual stages in the development of algebra that 

occurred alongside the changes in expression. The four stages were as follows: 

1. Geometric stage, where the concepts of algebra are largely geometric. For instance, an 

equation of the form x²= A was solved by finding the side of a square of area A. 

2. Static equation-solving stage, where the objective is to find numbers satisfying certain 

relationships. 

3. Dynamic function stage, where motion is an underlying idea. Algebra did not decisively 

move to dynamic function stage until Gottfried Leibniz. 

4. Abstract stage, where mathematical structure plays a central role. Abstract algebra is 

largely a product of the 19th and 20th centuries. 

 

Key ideas 

Key I 

• Properties of binary operations 

• Types of numbers 

• Every composite natural number can be expressed as a product of primes. 

• Highest Common Factor (HCF) or the Greatest Common Divisor (GCD) of two or more given 

natural numbers is the greatest number which is a factor of the given numbers 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of properties of binary operations in the teaching and learning 

of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of properties of binary operations equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  
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UNIT 4: INTRODUCTION TO PHILOSOPHY OF MATHEMATICS 

 

If mathematics is regarded as a science, then the philosophy of mathematics can be regarded 

as a branch of the philosophy of science, next to disciplines such as the philosophy of physics 

and the philosophy of biology. However, because of its subject matter, the philosophy of 

mathematics occupies a special place in the philosophy of science. Whereas the natural 

sciences investigate entities that are located in space and time, it is not at all obvious that this 

is also the case for the objects that are studied in mathematics. In addition to that, the methods 

of investigation of mathematics differ markedly from the methods of investigation in the 

natural sciences. Whereas the latter acquire general knowledge using inductive methods, 

mathematical knowledge appears to be acquired in a different way: by deduction from basic 

principles. The status of mathematical knowledge also appears to differ from the status of 

knowledge in the natural sciences. The theories of the natural sciences appear to be less certain 

and more open to revision than mathematical theories. In this unit, we shall be looking at what 

philosophy is, Plato and Platonism, Formalism, Intuitionism, Absolutism, and end with 

Fallibilism. 

 

Learning outcome(s) 

By the end of the unit, you should be able to explain: 

1. The philosophy of mathematics 

2. Plato and Platonism; 

3. Formalism, their tenets, and the implication for teaching and learning of mathematics; 

4. Intuitionism, their tenets, and the implication for teaching and learning of mathematics 

5. Absolutism, their tenets, and the implication for teaching and learning of mathematics 

6. Fallibilism, their tenets, and the implication for teaching and learning of mathematics 

 

SESSION 1: WHAT IS PHILOSOPHY OF MATHEMATICS? 

In this session, we will focus on explaining philosophy of mathematics; as well as the 

philosophical assumptions in the teaching and learning of mathematics. It is hoped that 

learners would be able support in achieving the aims of philosophy of mathematics. 

Learning outcomes 

By the end of the session, the participant will be able to explain the: 

1. philosophy of mathematics 

2. aims of philosophy of mathematics 

The science of numbers is mathematics. Arithmetic and geometry were the two traditional 

branches of mathematics that dealt with numbers and shapes, respectively. Even if modern 

mathematics is more complex and works with a larger range of objects, geometry and 

arithmetic remain of utmost importance. On the one hand, mathematical facts appear to be 

inevitable and compelling, but on the other, the origin of their "truthfulness" is still a mystery. 

The study of mathematics looks into this problem. The study of mathematics' most fundamental 

ideas and logical structure, with an eye toward the unification of all human knowledge, is 

known as foundations of mathematics. Number, shape, set, function, algorithm, mathematical 
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axiom, mathematical definition, and mathematical proof are some of the most fundamental 

mathematical concepts. The abstract nature of mathematical concepts poses unusual and 

original philosophical problems. 

 

Philosophies are seen as explanations that make an effort to create some type of order out of 

the inherent disorder of a collection of experiences. A philosophy is the description of a theory 

about the nature of something. It is a process of clarifying and organising experiences and 

values; it seeks relationships between things that are typically perceived as disparate and 

identifies significant differences between things that are typically regarded as the same. A 

philosophy is a product of time, thus it could become old or need to be modified in light of new 

experiences. 

 

The area of mathematics known as philosophy of mathematics focuses on the philosophical 

underpinnings, premises, and consequences of mathematics. It tries to explain the nature and 

methods of mathematics and to comprehend the use of mathematics in everyday life. This topic 

is both extensive and distinctive among its philosophical counterparts due to the logical and 

structural structure of mathematics itself. 

 

The key issues in metaphysics and epistemology are strongly tied to those in mathematics 

philosophy. It appears that mathematics studies intangible things. This prompts inquiries into 

the characteristics of mathematical entities and the methods by which we might learn about 

them. It becomes hard to imagine that mathematical objects might possibly be a part of the 

physical world after all. In a different sense, the philosophy of mathematics has shown that 

there is some potential for applying mathematical techniques to philosophical issues pertaining 

to mathematics. 

 

Philosophy of mathematics is concerned with two main issues: the first is the meaning of 

everyday mathematical expressions, and the second is the question of whether abstract objects 

actually exist. The first is a simple interpretation problem: What is the best method to 

understand common mathematical statements and ideas like "5 is prime," "2+2 4," and "There 

are infinitely many prime numbers"? Therefore, developing a semantic theory for the 

mathematical language is the primary goal of mathematics philosophy. Semantics is concerned 

with the meanings of specific terms in everyday speech. 

 

The interest in the meanings question was sparked by two things: 1) It is not at all clear what 

the correct response is, and 2) The many responses appear to have significant philosophical 

ramifications. More particular, various mathematical interpretations appear to yield various 

philosophical conceptions of the nature of reality. There are arithmetic sentences that seem to 

make simple statements about particular items. For instance, the phrase "5 is Odd" appears to 

be a straightforward subject-predicate sentence of the type "P is Q." "5 is odd" seems to make 

a clear and straightforward statement about the number 5. However, this is where the mystery 

lies. First of all, it's unclear what the number 5 should be. What sort of thing is a number, 

secondly? While realists believe there are such things as numbers, certain antirealist 
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philosophers believed there are simply no such things as numbers (as well as other 

mathematical objects). 

 

There are a variety of opinions about what a number is, even among realists. Some realists 

believe that numbers are mental objects, similar to thoughts that individuals have in their heads. 

Other realists contend that numbers are aspects of the physical reality that are independent of 

human thought. There is a third theory on the nature of numbers, known as Mathematical 

Platonism, which has gained increasing traction throughout the course of philosophy. This 

theory held that numbers are abstract objects that are neither physical nor metallic. One of the 

oldest and most contentious issues in philosophy is whether or not abstract objects actually 

exist. The idea that such entities exist dates back to Plato, and there has been significant 

opposition to the idea at least since Aristotle. More than 2,000 years have passed since the start 

of this ongoing debate. 

 

A mathematical object is an abstract item that appears in both mathematics and mathematical 

philosophy. Numbers, permutations, partitions, matrices, sets, functions, and relations are 

examples of mathematical objects. The objects of algebra include groups, rings, and so on. 

Hexagons, points, lines, triangles, circles, spheres, polyhedra, topological spaces, etc. are 

examples of objects in geometry. 

 

Mathematical objects are frequently quite abstract and removed from our normal sensory 

experiences. The existence and character of mathematical things thus pose unique 

philosophical problems. Is a square floor tile different from a geometrica square, for instance? 

So, where is the square-shaped object? Is it in our heads, on the floor, or some other place? 

Regarding sets, Do 52 cards make up a set, or is there something else involved? 

 

Such problems were treated seriously by the Greek philosophers of antiquity. Indeed, they 

frequently used geometry and mathematics as a reference in their general philosophical talks. 

Aristotle examined and criticised Plato's assertion that mathematical objects, such as the 

Platonic forms, must be completely abstract and have a unique, immaterial nature. Aristotle 

claimed that the geometrical square is a crucial component of the square floor tile, but that it 

can only be comprehended by ignoring other unnecessary factors like the precise 

measurements, the type of material used for the tiling, etc. These issues undoubtedly lend 

themselves well to philosophical inquiry and discussion. 

 

The Absolutist and Fallibilist interpretations of the nature of mathematics were distinguished 

by Lerman (1983) as two opposing viewpoints. Four different categories of concepts—

multiplism, absolutism, relativism, and dynamism—were postulated by Grouws (1992) and 

Copes (1979). Platonism and Formalism are the two main theories of mathematics that shaped 

its beginnings. There are numerous schools of thought on philosophy of mathematics, which is 

now being investigated along a number of different paths by mathematicians, logical theorists, 

and philosophers of mathematics. 
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According to mathematical realism, mathematical objects exist apart from the mind. As a 

result, rather than creating mathematics, people find it. Thus, only one type of mathematics can 

be found; for instance, triangles are actual objects and not the products of the mind. The 

proponents of mathematical realism consider themselves as the finders of things that exist in 

nature. Kurt Gödel and Paul Erdös are two examples. According to Gödel, there is an objective 

mathematical world that may be experienced similarly to how the senses work. However, the 

continuum hypothesis conjecture may not be determinable just on the basis of some principles 

(e.g., for each two items, there is a collection of objects consisting of only those two objects). 

According to Aristotelian realism, mathematics investigates symmetry, continuity, and other 

qualities that are literally realised in the physical world (or in any other world there might be). 

They contend that mathematical concepts like numbers can actually be realised physically 

rather than existing in a "abstract" universe. For instance, the relation between a bunch of 

parrots and the all-encompassing "being a parrot" that separates the bunch into so many parrots 

makes the number 4 apparent. 

 

Key ideas 

Key I 

• Mathematics is the science of quantity 

• The abstract nature of mathematical objects presents philosophical challenges that are unusual 

and unique. 

• Philosophy is regarded as an explanation, which attempts to make some kind of sense out of 

the natural disorder of a set of experiences  

• philosophy is a function of time and so may become outdated or have to be altered in the light 

of additional experiences  

• Philosophy of Mathematics is the branch of mathematics that studies the philosophical 

assumptions, foundations, and implications of mathematics 

• Philosophy of mathematics is concerned with problems that are closely related to central 

problems of metaphysics and epistemology 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of philosophy of mathematics in the teaching and learning of 

mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of philosophy of mathematics equipped you to be a better mathematics 

teacher?  
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• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

 

SECTION 2: PLATO AND PLATONISM 

 

In this session, we will focus on explaining Plato and Platonism philosophical perspective of 

philosophy of mathematics; as well as core issues in Platonism. It is hoped that learners 

would be able apply the aims of Platonism philosophical perspective in mathematics 

education. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain Plato and Platonism philosophical perspective of mathematics 

2. explain the core issues in Platonism 

3. apply the aims of Platonism philosophical perspective in mathematics education 

One of the most significant supporters of mathematics in ancient Greece was the philosopher 

Plato. In 387 BC, Aristotle founded his Academy in Athens, emphasising mathematics as a 

means of learning more about reality. Because of its abstract nature, he claimed that geometry 

holds the key to discovering the secrets of the cosmos and that it is "the first necessity in the 

teaching of philosophers." Let no one who is uninformed of geometry approach here, reads a 

famous inscription above the entrance to Plato's Academy. 

 

Mathematics was taught as a subfield of philosophy in Plato's Academy. As the "manufacturer 

of mathematicians," Plato's Academy produced notable mathematicians throughout antiquity, 

including Eudoxus. The Platonic Solids are five regular symmetrical three-dimensional shapes 

identified by Plato that have come to be known as the foundation of the universe. They are the 

tetrahedron (built with four regular triangles and representing fire in Plato), the octahedron 

(composed of eight triangles and representing air), the icosahedron (composed of twenty 

triangles and representing water), the cube (composed of six squares and representing earth), 

and the icosa (made up of 12 pentagons, which Plato described as "the god used for arranging 

the conste lla tions on the whole heaven"). 

 

The kind of realism known as mathematical platonism contends that mathematical concepts 

are abstract, devoid of spatiotemporal or causal qualities, and eternal and unchanging. It is 

frequently asserted that most individuals interpret numbers in this way. The well-known 

Pythagoreans of ancient Greece, who held the notion that the cosmos was essentially formed 

by numbers, before and possibly had an influence on Plato's beliefs. 
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The existence of mathematical entities—and how do we know about them—in detail is a key 

issue in mathematical Platonism. Do the mathematical entities live in a realm that is entirely 

apart from our physical one? How can we enter this other dimension and learn the reality about 

the beings there? The Ultimate Ensemble, a theory that holds that any structures that exist 

mathematically also exist physically in their own world, is one solution that has been put forth. 

More people have been drawn to mathematical Platonism throughout the history of philosophy. 

Numbers are abstract, non-physical, and non-metal objects, according to Platonists. They 

perceive abstract objects, but neither the real world nor human minds contain them. In actuality, 

they don't even exist in space and time. 

 

The Platonists include notable figures like Plato (1941) and Thom (1971). Platonists believe 

that there are true mathematical statements that accurately describe these abstract objects and 

that there are abstract objects that are completely non-spatiotemporal, non-physical, and non-

mental. They all concur that non-spatiotemporality is the real distinguishing characteristic of 

an abstract object. In other words, although abstract objects are completely non-mental and 

cannot be found anywhere in the physical realm, they have existed and will continue to exist 

forever. One may see the number 5 as an example. This does not imply, however, that the 

number 5 is merely an abstract concept. Since the number 5 is an abstract object, it exists 

independently of humans and their thoughts, just like the moon and stars, yet it is nonphysical, 

unlike the moon and stars. 

 

Abstract objects are completely non-causal and unchangeable in the eyes of Platonists. Due to 

their lack of spatial extension and material construction, abstract things are unable to form 

cause-and-effect interactions with other objects. 

 

Platonists also contend that such objects are accurately described by mathematical theorems. 

For instance, the theory of arithmetic describes how this series of abstract objects looks using 

the positive integers 1, 2, 3, and so on. There are some fascinating details about this pattern. 

Euclid demonstrated that there are an unlimited amount of prime numbers among the positive 

integers about 2,000 years ago. Platonists assert that the sequence of positive integers is a 

subject of study in the same way as astronomers study the solar system. In addition to numbers, 

there are numerous additional types of mathematical objects. These are abstract things like 

functions, sets, vectors, circles, etc. Thus, according to Platonist definitions, mathematics is the 

study of the nature of diverse abstract mathematical forms. 

 

One of the most prevalent ideologies among mathematicians is Platonism. The age of it exceeds 

two million years. The strongest argument in favour of platonism is said to have been 

established by a German named Gottlob Frege in the late 19th century, albeit he did not change 

how the argument was expressed. Kurt Gödel, an Austrian, and William Van Orman Quine, an 

American, both put out theories in the 20th century to try and explain how people could learn 

about abstract objects. The Platonist viewpoint itself was unaltered by them either. 

 

In conclusion, Platonists believe that mathematical objects exist and that this fact is 

independent of our understanding of them. The items are real and distinct with distinct 
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attributes, some of which are known and some of which are not. Every problem in mathematics 

has a solution (whether we can determine it or not). Due to the existence of something, the 

mathematician does not create anything new. Nothing is invented by a mathematician because 

it already exists. He can only learn. Based on these principles, the primary goal of mathematics 

education is to impart knowledge that is beneficial in and of itself—good because it develops 

the mind rather than because it is useful in day-to-day life. 

 

 

Key ideas 

Key I 

• Plato perceived mathematics as a way of understanding more about reality 

• Plato's Academy taught mathematics as a branch of philosophy 

• Mathematical Platonism is the form of realism that suggests that mathematical entities are 

abstract, have no spatiotemporal or causal properties, and are eternal and unchanging  

• Platonism is basically about where and how do the mathematical entities exist, and how do we 

know about them? 

• Platonists thus defined mathematics as the study of the nature of various mathematical 

structures, which are abstract in nature. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of Platonism in philosophy of mathematics in the teaching and 

learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of Platonism in philosophy of mathematics equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SECTION 3: FORMALISM 

 

In this session, we will focus on explaining formalism philosophical perspective of 

philosophy of mathematics; as well as core issues in formalism. It is hoped that learners 

would be able apply the aims of formalism philosophical perspective in mathematics 

education. 
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Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain the formalists philosophical perspective of mathematics 

2. explain the core issues in formalism 

3. apply the aims of the formalist’s philosophical perspective in mathematics education 

 

The discovery that all of mathematics may be reduced to formal theories in the 20th century 

caused a major uproar. The emergence of the extreme philosophical philosophy known as 

formalism was one manifestation of this elation. Formalism holds that mathematics is merely 

a formal game that is primarily interested in the algorithmic manipulation of symbols. The 

symbols are nothing more than marks on paper or bits and bytes in a computer's memory. As a 

result, mathematics cannot assert to possess any kind of object-specific knowledge. Indeed, 

there is no such thing as a mathematical object. 

 

In the arts, literature, or philosophy, formalism is the stress on form over meaning. According 

to formalists, the literal content produced by a practitioner is the only transcendent meaning 

associated with that discipline. Formalists are solely focused on "the rules of the game," and 

they hold the view that there is no other external truth that can be attained in addition to those 

predetermined guidelines. 

 

Formalists contend that mathematics is nothing more than the symbols that the mathematician 

writes down, which are based solely on logic and a few simple rules. Disciplines based on 

axiomatic systems benefit from formalism. They think that axioms, definitions, and theorems 

make up mathematics. In mathematics, formal symbolic systems are of interest. 

Mathematicians are seen by formalists as a collection of these kinds of abstract advances, in 

which the concepts are merely symbols. Mathematics merely comprises perfect symbolic parts 

and lacks any tangible content. As a result, teachers of rules and formulas that encourage 

instrumental learning are born. 

 

A particular school of thought in the philosophy of mathematics known as formalism 

emphasises axiomatic proofs via theorems. They regarded the study of formal axiom systems 

as mathematics. According to the formalist idea, mathematical and logical claims can be 

viewed as statements about the effects of particular string manipulation rules. A game called 

Euclidian geometry is played by moving around a collection of symbol strings called axioms 

in accordance with a set of guidelines known as the rules of inference to create new strings. 

Because the string that embodies the Pythagorean Theorem can be created by following only 

the given rules, this game can be used to demonstrate the validity of the Pythagorean Theorem. 

According to formalism, the truths revealed by logic and mathematics have nothing to do with 

sets, numbers, triangles, or any other specific subject. They actually don't have anything to do 

with anything. Unless they are given a purpose, their shapes and positions are meaningless. 
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David Hilbert, who made the initial effort to axiomatize all of mathematics, was a significant 

early proponent of formalism. He was attempting to demonstrate the consistency of number 

theory because he believed that there was some purpose and truth in mathematics. There must 

be some validity to number theory if it turns out to be consistent. Mathematics is separated 

from its semantic meaning in the eyes of strict formalists. They see arithmetic as simply the 

manipulation of symbols in accordance with predefined rules. They then make an effort to 

demonstrate the consistency of this system of rules, much like Hilbert did. Other formalists, 

such Haskell Curry, Alfred Tarksi, and Rudolf Carnap, saw mathematics as the study of formal 

axiom systems. 

 

The second of Göde's incompleteness theorems, which implies that sufficiently expressive 

consistent axiom systems can never prove their own consistency, severely weakened Hilbert's 

attempts to construct a mathematical system that is both complete and consistent. You cannot 

demonstrate consistency in any axiomatic system that is sufficiently rich to contain classical 

arithmetic, according to Gödel's incompleteness theorem. It is impossible to demonstrate the 

consistency of this language by itself, hence in one case you must only utilise the formal 

language used to formalise this axiomatic system. Hilbert's attempt to fully codify all of number 

theory was severely thwarted by Gödel's work. However, Gödel did not believe that he 

completely refuted Hilbert's formalist viewpoint. The main difference is that, contrary to what 

Hilbert had intended, the proof theory could not be utilised to demonstrate the consistency of 

the entire field of number theory. The major argument against formalism is that it is too 

disconnected from the real mathematical concepts that keep mathematicians up at night. 

 

One type of formalism is deductivism. The Pythagorean Theorem is a relative fact according 

to deductivism rather than an unalterable one. This means that you must accept the theorem, or 

rather, the interpretation of the theory you have given it, as a true statement if you interpret the 

strings in a way that makes the game's rules true. 

 

Deductivism holds that all other propositions of formal logic and mathematics are also true. 

Formalism need not equate these logical sciences to useless games of symbols. Usually, the 

assumption is made that there is some interpretation in which the game's rules are valid. In 

response to formalism, a number of alternative doctrines have been promoted. One of them is 

constructivism, which holds that a sequence of purely mental constructions can be used to 

acquire mathematical knowledge. According to this perspective, mathematical objects only 

exist in a mathematician's head, making mathematical knowledge completely certain. 

However, the relevance of mathematics to the outside world is called into question. 
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Key ideas 

Key I 

•  Formalism believed that mathematics is only a formal game, concerned solely with algorithmic 

manipulation of symbols. 

• Formalism is a certain school of thought in the philosophy of mathematics, which stresses 

axiomatic proofs through theorems  

• Formalism lends itself well to disciplines based upon axiomatic systems 

• Formalists regard mathematics as a collection of such abstract developments, in which the 

terms are mere symbols 

• Gödel's incompleteness theorem means that you cannot prove consistency within any axiomatic 

system rich enough to include classical arithmetic 

• Deductivism is one version of formalism 

 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of formalism in philosophy of mathematics in the teaching and 

learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of formalism in philosophy of mathematics equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SECTION 4: INTUITIONISM 

 

In this session, we will focus on explaining intuitionism philosophical perspective of 

philosophy of mathematics; as well as core issues in intuitionism. It is hoped that learners 

would be able apply the aims of intuitionism philosophical perspective in mathematics 

education. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain the intuitionists philosophical perspective of mathematics 

2. explain the core issues in intuitionism 

3. apply the aims of the intuitionist’s philosophical perspective in mathematics education 
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L.E.J. Brouwer, a Dutch mathematician, developed the intuitive approach to mathematics 

(1881-1966). The philosophy is predicated on the notion that mathematics is a mental construct. 

Mathematical statements can only be shown to be true mentally, and communication among 

mathematicians simply serves to facilitate the development of the same mental process in 

various brains. 

 

Intuitionism has a key component with the majority of other constructivist ideologies, which 

are typically logical and useful mathematical objects. Theoretically, one can derive algorithms 

that compute the elements and simulate the constructions whose existence is established in the 

proof from constructive proofs. The majority of constructivist theories are compatible with 

classical mathematics since they generally follow a stricter interpretation of the permitted 

constructions and connectives and quantifiers while making no extra assumptions. Almost all 

constructive societies subscribe to the same logic, known as intuitionistic logic. 

 

This perspective on mathematics has broad ramifications for mathematical work on a daily 

basis. It is crucial to understand how time affects intuitionism because over time, propositions 

may become demonstrably true and, as a result, may start to qualify as valid according to 

intuitionism even if they weren't earlier. In addition to developing intuitionism as a philosophy, 

Brouwer applied these ideas to mathematics, particularly the theory of sets and the theory of 

the continuum. Even though they held opposing opinions on the subject, some of the most 

renowned mathematicians of his time accepted his philosophy as a genuine alternative to 

classical logic, despite the fact that many others found it awkward. One of them, for instance, 

was Kurt Gödel. 

 

David Hilbert and Brouwer had a disagreement that rocked the mathematical community at the 

start of the 20th century and was brought on by the emergence of mathematical paradoxes. 

Philosophers are compelled to admit that mathematics lacks an ontological and epistemological 

foundation. 

 

According to Brouwer, mathematics is a mind-created, languageless concept. The only a priori 

concept is time. He separates two types of intuition: The primary concern of the first act is the 

total dissociation of mathematics from mathematical language and, by extension, from 

linguistic phenomena covered by theoretical logic. He understood that intuitionistic 

mathematics is primarily a languageless mental activity with roots in the perception of temporal 

movement. The natural numbers are created by intuitionism's first act, but it also indicates that 

the rules of reasoning are severely constrained. 

 

The second act deals with allowing two methods for creating new mathematical entities: first, 

in the form of more or less freely proceeding infinite sequences of previously acquired 

mathematical entities; and second, in the form of mathematical species, which are properties 

supposable for previously acquired mathematical entities that satisfy the requirement that if 

they hold for a particular mathematical entity, they also hold for all mathematical entities which 

have been defined. 
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The two intuitionistic acts serve as the cornerstone of Brouwer's philosophy. These 

fundamental ideas lead to the conclusion that intuitionism is distinct from Platonism and 

Formalism. This is due to the fact that it neither holds that mathematics is a game of symbols 

played by predetermined rules nor does it postulate an external mathematical reality. According 

to Brouwer, mathematics is communicated through language, but the latter is independent of 

the former. The freedom that the second act offers in the formation of infinite sequences is 

what sets intuitionism apart from other constructive viewpoints on mathematics that maintain 

that mathematical objects and arguments should be computable. 

 

As a result, Brouwer's intuitionism is neither Platonism nor Formalism because it is grounded 

in a knowledge of time and a belief that mathematics is an invention of the free mind. It is a 

kind of constructivism, but only in the broadest sense, as many constructivists do not subscribe 

to all of Brouwer's tenets. 

 

According to mathematics intuitionism, "there are no non-experienced mathematical truths." 

According to intuitionists, the corrigible part of mathematics has to be rebuilt using Kantian 

notions of being, becoming, intuition, and knowing. According to Brouwer, the a priori forms 

of the volitions that guide how we perceive empirical objects give rise to mathematical objects. 

He disregarded the law of excluded middle, proofs by contradiction, and the axiom of choice 

as being useful for mathematics of any kind. However, the lack of a precise definition of the 

word "explicit construction" in intuitionism has drawn criticism. 

 

Key ideas 

Key I 

•  Intuitionism is based on the idea that mathematics is a creation of the mind 

• Intuitionism shares a core part with most other forms of constructivism which is generally 

Constructive mathematical objects and reasoning  

• Brouwer described mathematics as a languageless creation of the mind  

• Truth of a mathematical statement can only be conceived via a mental construction that proves 

it to be true and the communication between mathematicians only serves as a means to create 

the same mental process in different minds 

• Brouwer held that mathematical objects arise from the a priori forms of the volitions that inform 

the perception of empirical objects  

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of intuitionism in philosophy of mathematics in the teaching 

and learning of mathematics?  
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• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of intuitionism in philosophy of mathematics equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SECTION 5: ABSOLUTISM 

 

In this session, we will focus on explaining absolutism philosophical perspective of 

philosophy of mathematics; as well as core issues in absolutism. It is hoped that learners 

would be able apply the aims of absolutism philosophical perspective in mathematics 

education. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain absolutism philosophical perspective of mathematics 

2. explain the core issues in absolutism 

3.  apply the aims of absolutism philosophical perspective in mathematics education 

 

According to absolutists, mathematics is a body of knowledge whose truths are universally 

acknowledged to be necessary and unquestionable. The foundation of the entire system is based 

on a set of self-evident presumptions. Since mathematics governs nature and helps to develop 

the universe through its immutable consistency over time and space, they view it as almost 

being independent of humanity. One of mathematics' most potent charms is consistency. The 

straightforward experiment of repeatedly dropping an apple and timing how long it takes to hit 

the ground serves as one kind of proof. Never has anyone objected to this. The nature of 

mathematics was broadly accepted for several thousand years. 

 

All of our understanding of mathematics is based on axioms. Logic was used to construct the 

theorems and proofs that made up the subject itself from axioms. Because the laws of nature 

were independent of human existence, mathematics was often considered as being value-free. 

Their worldview prohibited challenging fundamental mathematical concepts or the methods 

used to generate them. Absolutists are a group of educational ideas that include the industrial 

trainer and ancient humanists. The student is seen as an empty vessel, and the teacher as an 

authoritarian. 
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The absolutists believed that mathematics is a body of knowledge that is objective, absolute, 

certain, and incorrigible and that is based on the solid principles of deductive reasoning. 

Mathematical absolutist philosophies focus on the epistemic task of supplying mathematical 

knowledge without exception rather than on descriptive philosophies. They attribute 

mathematics to the use of strict logical structures that were created for epistemological reasons. 

They contend that mathematical knowledge is: 1) timeless, even though new theories and truths 

may be added; 2) superhuman and ahistorical, since the history of mathematics has no bearing 

on the nature or justification of mathematical knowledge; 3) pure isolated knowledge, which 

just so happens to be useful due to its universal validity; and 4) value-free and culture-free, also 

for the same reason. 

 

According to absolutism, mathematics is seen as being rigid, fixed, logical, absolute, inhuman, 

chilly, objective, pure, abstract, distant, and overly rational. If teachers have this perspective 

on mathematics, then it is likely that they will convey this perspective to the pupils they teach. 

Due to their influence, students are frequently assigned unrelated routine arithmetic 

assignments in school and expected to use previously learned techniques. Such instructors 

emphasise that each mathematical problem has a specific, fixed, and indisputable correct 

solution, and they will not tolerate any inability to arrive at this solution. 

 

These philosophies are presented from the perspective of a mathematician. However, the way 

mathematics is taught in schools and how it is taught has an impact. When it comes to 

educational practises, different mathematical ideas provide wildly divergent results. The 

absolutist view of mathematics as being cold, absolute, and inhuman is confirmed by several 

classroom experiences from both teachers and students. This view is frequently linked to 

unfavourable attitudes toward mathematics. 

 

Key ideas 

Key I 

• Absolutists regarded mathematics as an objective, absolute, certain, and incorrigible body of 

knowledge, which rests on the firm foundations of deductive logic 

• Absolutists hold the view that mathematics is a body of knowledge whose truths appear to 

everyone to be necessary and certain  

• Absolutists see mathematics as almost independent of humankind, existing as it does in its 

government of nature, which builds the universe together with its unfailing consistency across 

time and space  

• Axioms provided the basis for all mathematical knowledge  

• Mathematics was widely regarded as value-free, at least partly because the laws of nature were 

not dependent upon the presence of humankind 

• Theorems and proofs which constituted the subject itself were built on axioms using logic 
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Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of absolutism in philosophy of mathematics in the teaching and 

learning of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of absolutism in philosophy of mathematics equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SECTION 6:  FALLIBILISM 

In this session, we will focus on explaining fallibilism philosophical perspective of 

philosophy of mathematics; as well as core issues in fallibilism. It is hoped that learners 

would be able apply the aims of fallibilism philosophical perspective in mathematics 

education. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain fallibilism philosophical perspective of mathematics 

2. explain the core issues in fallibilism 

3.  apply the aims of fallibilism philosophical perspective in mathematics education 

 

Part of fallibilism's emergence was a response to absolutism. in general The Fallibilists 

countered that the Absolutists' belief in an infallible body of reasoning that is acknowledged 

by everyone is a big lie. The awareness that there are no dependable sources of information 

and that all sources are faulty leads to fallibilism, a school of thought in and of itself. According 

to them, mathematics is fundamentally a human endeavour that was created by humans, making 

it vulnerable to human error. In contrast to absolutists, they do not adhere to a set of beliefs 

based on unquestionable truths. Fallibilists contend that we should openly acknowledge 

mathematics' limitations. 

 

They put out the idea that mathematics is a human endeavour that is fallible, historical, and 

dynamic. According to the Fallibilist, social processes produce mathematics. Mathematical 

knowledge must always be subject to change, including both its conceptions and its proofs. 

This viewpoint accepts the methods used by mathematicians, their history and applications, the 

significance of mathematics in human society, as well as ethical and educational 

considerations. They disagree with the idea that there is a single, fixed, and indelible 
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hierarchical structure, but they do not dismiss the importance of logic and organisation in 

mathematics. They acknowledge that mathematics is composed of numerous overlapping 

structures that have grown, disintegrated, and then regrown throughout history, much like trees 

do in a forest. 

 

According to fallibilism, mathematics is connected to a variety of social practises, each with 

its own history, people, institutions, and social locations, as well as symbolic forms, purposes, 

and power dynamics. Fallibilism challenges the absolutist view of mathematics as a body of 

pure and perfect abstract knowledge existing in a superhuman, objective realm. Some examples 

of such activities are academic research, classroom mathematics, and ethnomathematics. 

 

Fallibilists contend that while mathematical knowledge is a contingent social construction, it 

is fixed and should be transmitted to learners in this way as long as it is still accepted by the 

mathematical community. They also contend that questions of school mathematics are only 

uniquely definable as right or wrong with reference to its conventional Corpus of knowledge. 

Fallibilists hold that there can be no absolute assurance in knowledge, or at the very least, that 

any claim to knowledge could theoretically be false. They acknowledge that empirical 

knowledge may constantly be changed through additional observation, meaning that any such 

understanding could end up being incorrect. Although Socrates and Plato are thought to have 

known about fallibilism, the formal idea is most closely connected with the late 19th-century 

philosopher Charles Sanders Peirce and others like W.V.O. Quine and Karl Popper (1902 

1994). It affected the growth of C. S. Peirce's, William James', and John Dewey's pragmatism. 

 

Key ideas 

Key I 

• Fallibilists argued that the Absolutists held view of a universally accepted, infallible body of 

reasoning is a grand illusion 

• Fallibilists regard mathematics as an essentially human pursuit, invented by humans, and this 

makes it prey to human fallibility 

• Fallibilists positioned the image of mathematics as human, corrigible, historical and changing 

• Mathematics to the Fallibilist is the outcome of social processes 

• Mathematical knowledge is to be eternally open to revision, both in terms of its proofs and its 

concepts 

• Fallibilists believe that absolute certainty about knowledge is impossible, or at least that all 

claims to knowledge could, in principle, be mistaken. 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of fallibilism in philosophy of mathematics in the teaching and 

learning of mathematics?  



66 
 

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of fallibilism in philosophy of mathematics equipped you to be a better 

mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  
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UNIT 5: PROOFS IN MATHEMATICS 

 

The definition of a proof is the logical way in which mathematicians demonstrate that a 

statement is true. In general, these statements are known as theorems and lemmas. A theorem 

is a declaration that can be determined to be true using mathematical operations and 

arguments. On the other hand, a lemma is like a smaller theorem that is used to prove a much 

greater theorem is true. 

 

Learning outcomes 

By the end of the unit, participants should be able to explain: 

1. proofs in mathematics with specific examples; 

2. inductive reasoning and give some examples; 

3. proof by Mathematical Induction and perform examples of proof by mathematical 

induction 

4. Deductive Reasoning and give mathematical examples 

 

 

SESSION 1:  DEFINITION OF PROOF 

 

In this session, we will focus on explaining proofs; as well as mathematical proofs. It is 

hoped that learners would be able apply mathematical proofs in learning mathematics. 

 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain proofs 

2. explain mathematical proofs 

3. apply mathematical proofs in teaching and learning 

 

Our mathematical calculations frequently contain errors due to inaccurate measurement or a 

misunderstanding of the formulas we employ. In mathematics, we frequently want to be certain 

that our actions are correct, which is one reason why we require proofs. Simply testing our 

logic is proof. The Latin verb probare, which means "to test," is where the term "proof" 

originates. 

 

One of the most significant contributions of ancient Greek mathematics is the creation of 

mathematical proof. Euclid (300 BCE), who established the axiomatic technique, which is still 

in use today, revolutionised proofs by beginning with undefined concepts and axioms. This 

desire of certainty was fostered by the Greeks. They viewed mathematics as a means of creating 

a world of absolute truth, layering one fact upon another to ensure its accuracy. They first based 

a significant portion of their geometrical thinking on the presumption that any two lines could 
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be compared by identifying any unit small enough that their lengths were whole-number 

multiples of that unit; all lines were therefore considered to be "commensurable." However, it 

was found that the square root of two was irrational since the diagonal of a unit square was 

incommensurable with the side of the square. As a result, they were compelled to reconsider 

their arguments and were able to reconstruct their geometry. Mathematicians were reminded 

by this instance of the value of thoroughly proving everything. 

 

Mathematical propositions must first be proved (or refuted) in order for us to know if they are 

true or wrong. Presenting a sound mathematical proof is the only way to confidently establish 

the veracity of a conjecture. 

 

A proof is described as a series of statements, each of which is either correctly deduced from 

the claims that came before it, according to the Harper Collins Dictionary of Mathematics. In 

a similar vein, The Penguin Dictionary of Mathematics describes a proof as a line of reasoning 

based on principles of inference that leads to a conclusion. In our formal language, proofs are 

nothing more than the manipulation of symbols beginning with a set of precepts we refer to as 

axioms. 

 

A logical argument that confirms something's truth without a shadow of a doubt is referred to 

as a proof. It is the result of deriving one idea from another. The methods or procedures used 

to establish the veracity of a proposition are referred to as a proof. It is a justification that 

persuades other mathematicians that a claim is accurate. A strong argument for the truth also 

aids in their comprehension. A proof is a rigorous argument that is presented in clear language 

with the goal of persuading the listener that a statement is true. In the discipline of mathematical 

logic, the idea of a proof is codified. A formal proof is one that is written in a formal language 

as opposed to a natural language and is described as a series of formulas where each formula 

follows logically from the formulas before it. 

 

A mathematical statement's proof is a deductive argument. Theorems and other previously 

proven statements can be incorporated into the argument. A proof can, in theory, be traced back 

to axioms, which are self-evident or presumptive truths. In contrast to inductive or empirical 

arguments, proofs are instances of deductive reasoning. 

 

To prove anything is to persuadely demonstrate its truth or validity through an argument. A 

proof is strictly a series of facts that are inferred from axioms or previously known facts. It is 

implicitly assumed that a conclusion that meets the principles of logic is strong enough to 

support it. But occasionally, a proof may contain an error unintentionally. The evidence may 

then provide a strong case for the correctness of a fact, which could be true or untrue in and of 

itself. A proof is considered a fallacy if it offers a strong case for the truth of a false claim. 

 

A mathematical proof is a series of inferences that show a set of axioms to be true. 

Mathematical proof and common reasoning share certain similarities. A mathematical proof is 

an inferential argument where other previously established claims, such as theorems, are 

utilised to support the claim being made. 
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In mathematics, we can demonstrate that our actions are wholly correct. This is so that 

mathematics can be based solely on reason rather than on imperfectly understood physical 

principles or unpredictable human behaviour. In mathematics, unlike the real world, the rules 

are established by us, allowing us to know everything we require to be assured of what will 

occur. For instance, we can clarify what addition is before demonstrating that adding (b+a) 

always produces the same outcome as adding (a+b). 

 

Things must be supported by evidence if we are to avoid being duped. The mere fact that 

something holds true every time we try it does not guarantee that it will do so in the future. For 

example, we can be confident that a+b=b+a because we understand how addition works and 

know that this rule is a natural outcome of how addition works, not because we have always 

observed it to work that way. 

 

To refute a statement is to demonstrate its falsity, possibly by an illustration or by 

demonstrating its negation. Finding a counter example, or an example that meets the 

requirements of the statement's premises but not its conclusion, is frequently all that is 

necessary to refute it. 

 

Proofs in mathematics provide a lot of light. Possessing a solid proof on paper might be a sign 

that you have a solid grasp of the issue. Sometimes, the efforts to support a supposition 

necessitate a greater comprehension of the underlying theory. Even if attempts are made to 

establish the speculation but fail, one learns a great deal and learns a lot. The mathematical 

elegance of a proof can be valued as an aesthetic object. 

We often use two types of thinking in daily life: inductive reasoning and deductive reasoning. 

 

Key ideas 

Key I 

• In mathematics, we usually want to be sure that what we do is right and this is one reason why 

we need proofs 

• Proof is a logical argument that establishes, beyond any doubt, that something, is true 

• Proofs are simply the manipulation of symbols in our formal language starting from certain 

rules that we call axioms 

• Mathematics defines a proof as a chain of reasoning using rules of inference, ultimately based 

on a set of axioms that lead to a conclusion 

• Proof is a deductive argument for a mathematical statement 

• Mathematical proof is a process of deductions using axioms to demonstrate that a process is 

true. Mathematical proof has something in common with everyday argument 
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Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of mathematical proofs in the teaching and learning of 

mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of mathematical proofs equipped you to be a better mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 2: INDUCTIVE REASONING 

 

In this session, we will focus on explaining inductive reasoning; as well do examples of 

inductive reasoning. It is hoped that learners would be able to apply inductive reasoning in 

learning mathematics. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain inductive reasoning 

2. do examples of inductive reasoning 

Drawing a broad inference from what is happening around us is an example of inductive 

reasoning. To draw a conclusion, one must use experience, sensory impressions, and 

observations; in other words, one must predict what will happen in the near future based on 

observations from the past. For instance, I'm about to eat some beans and I've always gotten 

gas after eating beans. Inductive reasoning involves projecting patterns, regularities, and 

resemblances that have already been detected onto future experiences in order to make 

judgements about the unobserved based on witnessed examples. 

 

Is 414, 612, 522, 1602, 7020, 1121121, and 100314 divisible by 9? Why or why not, please. 

Analyzing the 9 times table critically reveals a pattern. In all of the products, the digit sum is 

9. Will the nine times table apply in all situations? 

A mathematician would frequently attempt to tackle an easier, but related problem first when 

faced with a challenging one. It is frequently the case that finding symmetry and pattern is the 

most elegant and efficient way to solve a mathematical problem. Let's think about the following 

issues: 
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Example 1 

Without using calculator or tables, compute 10 + 123456789 × 9. 

 

Solution: 

Study the pattern:  2 + 1× 9 = 11 

                         3 + 12 × 9 = 111 

      4 + 123 × 9 = 1111  

                                 

Any pattern observed in the answer as well as in the sequence of problems? Now predict the 

answer to the next problem? 

 

5 +  1234 × 9 = ⋯ 

Continue the computation like this until you see a pattern and then predict the answer to 

 

10 +  123456789 × 9 = ⋯ 

Example 2 

 Study the following pattern 

 9 × 1 − 1 = 8 

 9 × 21 − 1 = 188 

 9 × 321 − 1 = 2,888 

(a) Write down the next problem? 

 

(b) What is the next answer in the sequence? 

 (c) Use the patterns to predict the answer to 

 

9 × 987654321 − 1 

 

Solution 

The next problem and the answer are 9 × 4321 -1 = 38,888 

Using the patterns, we predict answer to the problem as: 

 9 × 987654321 - 1 = 8,888,888,588 

 

Inductive reasoning is a type of reasoning that uses specific data to infer a more general 

conclusion that is thought to be likely but yet leaving room for the possibility that the 

conclusion might not be accurate. A crucial way of thinking, frequently referred to as the 

scientific method, is inductive reasoning. For instance, inductive reasoning is crucial for 

scientific discovery because it is employed for developing ideas, hypotheses, and relationships. 

When conducting tests to find diverse natural laws, scientists employ inductive reasoning. 

Inductive reasoning is a technique used by statisticians when drawing conclusions from data. 

It entails deducing a general conjecture from specific facts or isolated occurrences. In other 

words, a generalisation is drawn based on a small number of observed events. The more distinct 

events we notice, the better able we are to generalise in the right way. A tentative inductive 

conclusion may need to be amended in light of fresh information. There might be a counter 
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example, but continuous inductive reasoning should be applied. There is no logical progression 

from premises to conclusion in inductive reasoning. The presumptions provide solid 

justification for accepting the result. Inductive arguments typically start with premises that are 

supported by data or observations. But since there isn't always a logical connection between 

the premises and conclusion, it is always possible for the premises to be accurate while the 

conclusion is incorrect. 

 

Sometimes using patterns can help answer difficult math problems. For instance, what if we 

were tasked with counting the squares on a 9 × 9 card? 

Start with a 1 by 1 Small Square, then move on to a 2 by 2 square, a 3 by 3 square, and so on. 

As you go, look for a pattern. 

 

Fibonacci numbers 

Fibonacci numbers are defined by the recurrence relation: 

𝑓1 =1, 𝑓2 = 1 and for n> 2,   𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 . 

So, the first few Fibonacci Numbers are: 

1, 1, 2, 3, 5, 8, 13, 21.34, 55, 89… 

Now, write down the next four numbers in the sequence. 

Are your numbers same as these 144, 233, 377, 610? 

 There are numerous curious properties of the Fibonacci Numbers. Once guessed, most such 

properties can be verified by induction. Here are a few of the properties. 

 

(i) For every n ≥ 1, f 𝜖 𝑛 is even. 

(ii) For every 121, 14 is divisible by 3. Try them yourself 

Although mathematicians often proceed by inductive reasoning to formulate new ideas, they 

are not content to stop at the "probable stage. It is simply based upon the principle of the 

uniformity of nature. We can only evaluate the reasonability of inductive arguments as strong, 

moderate, or weak arguments and not as cogent. An inductive argument is valid, only if 

 a) the projection from premise to conclusion is correct 

 b) the sample represented in the premise is large enough (representative enough). 

If you use inductive reasoning, you have to be open to revising your conclusion when new 

evidence comes to light, and that's what scientists generally do. They often formalize their 

predictions into theorems and then try to prove those theorems deductively. 

 

Key ideas 

Key I 

• Inductive reasoning involves drawing a general conclusion from what we see around us 

• Inductive reasoning is reasoning from experience, sense perceptions, and observations to form 

a conclusion 

• forming an expectation of what will happen in the near future, based upon past observations 
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Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts of inductive reasoning in the teaching and learning of 

mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of inductive reasoning equipped you to be a better mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

SESSION 3:  PROOF BY MATHEMATICAL INDUCTION 

 

In this session, we will focus on explaining proof by mathematical induction; as well do 

examples of proof by mathematical induction. It is hoped that learners would be able to apply 

proof by mathematical induction in learning mathematics. 

Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain proof by mathematical induction 

2. do examples of proof by mathematical induction 

 

Mathematical induction is a method of deduction, not a form of inductive reasoning. In proof 

by mathematical induction, a single "base case" is proved, and an "induction rule" is proved 

that establishes that any arbitrary case implies the next case. This avoids having to prove each 

case individually. The idea of mathematical induction is that a finite number of steps may be 

needed to prove an infinite number of statements 𝑃1,    𝑃2, 𝑃3…   Mathematical Induction is an 

important tool in Mathematics. It is a way of proving mathematics statements deductively for 

all positive integers. 

 

The complete proof for the infinity of cases is made to depend upon just two steps. 

1. The usually easy task of checking the formula in the case n = 1 (or sometimes the first 

positive integer for which the formula has meaning is the integer that is tested here). This 

may be called the Basis for the Induction; and 

 

2. The making of the hypothesis, H, that the formula is correct in all cases 1, 2, 3,…n and 

then proving that, as a consequence of the hypothesis, H, and previously known theorems, 

the formula is correct in the case (n+1).  This step is called the Core of the Induction Proof. 
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 Finally, if 1 and 2 have been established, we can apply the axiom of the mathematical 

induction and make the conclusion that the formula under consideration is true for all 

positive integers (or positive integers beginning with the smallest integer that can be used 

in step 1) 

 

The process of Principle of Mathematical Induction implies that 

(i)  Show it is true for n=1 

(ii)  Assume it is true for n = k 

 (iii) Show it is true for n = k+1 

Conclusion. The Statement is true for all n≥ 1  

 

The key word in step (ii) is assume. You are not trying to prove it's true for n= k, you're going 

to accept in faith that it is, and show it is true for the next number, n= k+1. The assumption is 

known as induction hypothesis. If it later turns out that you get a contradiction, then the 

assumption was wrong. 

 

It may be helpful to think of the domino effect illustrated in the diagram shown. An infinite 

number of dominoes are arranged in succession as shown. 

• The first domino will fall. 

• Whenever a domino falls, its next neighbor will also fall. 

• So it is concluded that all of the dominoes will fall. and that this fact is inevitable. 

 

DIAGRAM….. 

 

That is, to prove that a property known to hold for one number holds for all natural numbers: 

Let N = (1, 2, 3, 4,…) be the set of natural numbers, and P(n) be a mathematical statement 

involving the natural number belonging to N such that 

(i) P(1) is true, i.e., P(n) is true for n=1 

(ii) P(n+1) is true whenever P(n) is true, i.e., P(n) is true implies that P(n+1) is true. Then P(n) 

is true for all natural numbers n. 

 

Example 

Prove that for all the integers n, the number 32𝑛 −1 divisible by 8.  

Let 𝑃𝑟 : 3
2𝑛 −1 is divisible by 8. 

 

Proof: 

 

Basis: If n = 1, then 32𝑛 −1 =32(1) − 1 = 9 − 1 = 8 is divisible by 8. 𝑃1 is true. 

Core: Assume 32𝑘 − 1 is divisible by 8  

For some integer 𝑥, we have 

32𝑘 − 1 = 8𝑥 

32𝑘 = 1 + 8𝑥 

32 × 32𝑘 = 32(1 + 8𝑥) (𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑦 32) 
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32𝑘+2 = 9(1 + 8𝑥) = 9(8𝑥) = 1 + 8 = 9(8𝑥) 

32𝑘+2 = 1 + 8(1 + 9𝑥) 

(𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑢𝑡 8 𝑜𝑟 𝑎𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

32𝑘+2 − 1 = 1 + 8(1 + 9𝑥) 

 

 

 This implies that 32(𝑘+1) − 1 is divisible by 8. Since 𝑃1 is true and 𝑃𝑘+1 is true whenever 𝑃𝑘 

is true, 𝑃𝑟is true for all positive integers. 

 

 

Key ideas 

Key I 

• Mathematical induction is a method of deduction, not a form of inductive reasoning 

• In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is 

proved that establishes that any arbitrary case implies the next case 

• we can apply the axiom of the mathematical induction and make the conclusion that the formula 

under consideration is true for all positive integers (or positive integers beginning with the 

smallest integer that can be used in step 1) 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts proof by mathematical induction in the teaching and learning 

of mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of proof by mathematical induction equipped you to be a better mathematics 

teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 

 

 

SESSION 4: DEDUCTIVE REASONING 

 

In this session, we will focus on explaining deductive reasoning; as well do examples of 

inductive reasoning. It is hoped that learners would be able to apply deductive reasoning in 

learning mathematics. 
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Learning outcomes 

By the end of the session, the participant will be able to: 

1. explain deductive reasoning 

2. do examples of deductive reasoning 

 

When using deductive reasoning, you begin with a generalisation you are confident is true and 

come to conclusions about a particular situation. For instance, if you are aware that all sheep 

enjoy eating grass and that the animal you are currently looking at is a sheep, you may be 

certain that it does the same. Only if your premise is incorrect—that is, if you are wrong that 

all sheep like grass—or if the object in front of you is not a sheep—can this line of reasoning 

go awry. But if those two assumptions are true, then your conclusion—that it is true everywhere 

and forever—follows logically from your premises. Pythagoras' theorem is just one example 

of a statement that mathematics tries to prove is true forever and everywhere. Deductive 

reasoning is the foundation of mathematics for this reason. 

 

A mathematical proof is an argument that draws conclusions about the assertion being proved 

from other conclusions that are unquestionably true. For instance, if you know the values of 

the first two angles in a triangle, you can infer the third angle's value from the fact that all 

triangles drawn in a plane have angles that sum up to 180 degrees. 

 

Axioms, definitions, and prior theorems are logically combined to establish the conclusion via 

direct proof. To demonstrate, for instance, that the sum of two even numbers is always even, 

consider the following: 

 

Let the two even integers be 𝑥 𝑎𝑛𝑑 𝑦. They can thus be written as 𝑥 = 2𝑎 𝑎𝑛𝑑 𝑦 =

2𝑏, respectively, for integers 𝑎 𝑎𝑛𝑑 𝑏. Then the sum 𝑥 + 𝑦 = 2𝑎 + 2𝑏 = 2(𝑎 + 𝑏). 

Therefore, (𝑥 + 𝑦) has 2 as a factor and, by definition, is even. 

Hence the sum of any two even integers is even.  

This proof uses the definition of even integers, the integer properties of closure under addition 

and multiplication and distributivity. In algebraic proof we show that a result is true for x, and 

providing no arithmetic rules have been broken, it is true for any number subject the original 

boundaries set on x, for example, it must be a positive whole number. 

 

Example 1 

The 𝑛𝑡ℎ  term of the sequence of triangular numbers 1, 3, 6, 10, 15… is given by 
𝑛

2
(𝑛 + 1).  

Prove that eight times any triangular number is one less than a square number. 

 

Solution 

If it is a triangular number, then we need to prove that 8𝑇 + 1 is a square number, where T is 

a triangular number. 8𝑇 + 1  is given by 4𝑛(𝑛 + 1),  

which simplifies to 4𝑛2 + 4𝑛 + 1. 

 But 4𝑛2 + 4𝑛 + 1 = (2𝑛 + 1)2  which is a square number- we have proved the result. 
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Example 2: The 𝑛𝑡ℎ term of the so- called rectangular numbers is n(n+1). Prove that rectangle 

numbers are always even. 

 

 

Solution 

We need to prove that, for positive integer 𝑛, 𝑛(𝑛 + 1)𝑖𝑠 always even. 

If n is even then (n+1) is odd, but (even)× (odd) is always even. If n is odd then (n+1) is even 

but odd × even is always even. So, rectangle numbers are always even. 

 

Example 3: Prove that if you add two consecutive rectangle numbers, 𝑈𝑛 = 𝑛(𝑛 + 1) and half 

the answer, the result is always a square number. 

𝑈𝑛  = 𝑛(𝑛 + 1) = 𝑛2 + 𝑛 

𝑈𝑛+1  = (𝑛 + 1)(𝑛 + 2) = 𝑛2 + 3𝑛 + 2 

So 𝑈𝑛  + 𝑈𝑛+1=2𝑛2 + 4𝑛 + 2 = 2(𝑛2 + 2𝑛 + 1) 

Half of this is =𝑛2 + 2𝑛 + 1 

But this can be written as (𝑛 + 1)2 which is a square number- the result required. 

 

Example 4: For any two integers a and b, if a < b, then 𝑎2 < 𝑏2. At first sight, the statement 

may appear to be true, but it is not. 

 A counter example is given by a pair, 𝑎 = −1, 𝑏 = 0.  Indeed, 

-1 <0 as required by the conditions of the statement. But the conclusion 1 = (−1)2 < 02 =

0 is obviously wrong. The amended statement that requires a and b to be positive, can be shown 

to be correct. 

 

Example 5: Prove that if m and n are real and unequal, then 

𝑚2 + 𝑛2 > 2𝑚𝑛. 

 

 

Solution: 

 (𝑚 − 2)2 > 0 (𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 (𝑎 ± 𝑏)2 > 0) 

But(𝑚 − 𝑛)2 = 𝑚2 − 2𝑚𝑛 + 𝑛2 (𝐸𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔) 

⇒ (𝑚 − 𝑛)2 = 𝑚2 + 𝑛2 − 2𝑚𝑛 > 0.  (Associative Law of addition) 

⇒  𝑚2 + 𝑛2 > 2𝑚𝑛.    (𝑄. 𝐸. 𝐷, 𝑜𝑟 𝑝𝑟𝑜𝑣𝑒𝑑) 

 

A flawed proof 

Study the proof provided and explain what is wrong with the procedure.  

Let 𝑎 = 𝑏 

𝑇ℎ𝑒𝑛 𝑎2 = 𝑎𝑏 

𝑎2 + 𝑎2 = 𝑎2 + 𝑎𝑏 

2𝑎2 = 𝑎2 + 𝑎𝑏 

2𝑎2 − 2𝑎𝑏 = 𝑎2 + 𝑎𝑏 − 2𝑎𝑏 ( 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 2𝑎𝑏 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠). 

 

2𝑎2 − 2𝑎𝑏 = 𝑎2 − 𝑎𝑏 
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This can be written as 2(𝑎2 − 𝑎𝑏) = 1(𝑎2 − 𝑎𝑏) 

𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝑎2 − 𝑎𝑏  𝑔𝑖𝑣𝑒𝑠 2 = 1. 

 

Every step of a good mathematical proof is completely evident. Remember that a proof is 

simply a strong argument where each step is justified. Usually, proving involves several steps. 

It might not be immediately understood. John Mason, however, thinks that being stuck is a 

noble state and an important step in developing one's capacity for thought. Sometimes it's easy 

to become lost at the beginning, unsure of where to begin. It makes sense at this point to think 

of proving as a doable craft similar to other types of problem resolution. A few 

recommendations for ensuring the reliability of your evidence. 

 

Steps: 

1. Understand that mathematics uses information that you already know especially axioms or 

the results of other theorems. 

 

2. Write out what is given, as well as what is needed to be proven Start with what is given, use 

other axioms, theorems, or mathematics that you already know to be true, and arrive at what 

you want to prove True understanding means you can repeat, and paraphrase the problem in at 

least 3 different ways pure symbols, flowchart, and using words. 

 

3. Ask yourself questions as you move along "Why is this so?" and "Is there any way this can 

be false? Back up every statement with a reason! Justify your process. 

4. Make sure your proof is step-by-step. It needs to flow from one statement to the other, with 

support for each statement, so that there is no reason to doubt the validity of your proof. It 

should be constructionist, like building a house: orderly, systematic, and with properly paced 

progress. 

 

5. Ask your teacher or classmate if you have questions, it’s okay to ask questions every now 

and then- doing so is part of the learning process. 

 

6. Designate the end of your proof. One way for doing this is writing Q.E.D. (quod erat 

demonstrandum, which is Latin for which was to be shown”). Technically, this is only 

appropriate when the last statement of the proof is itself the proposition to be proven. 

 

7. Remember the definitions you were given. Go through your notes and the book to see if the 

definition is correct. 

 

8. Take time to ponder about the proof. The goal wasn't the proof, it was the learning. If you 

only do the proof and then move on then, you are missing out on half of the learning experience. 

Think about it. Will you be satisfied with this? 
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Key ideas 

Key I 

• Deductive reasoning you start from a general statement you know is true and draw conclusions 

about a specific case 

• Mathematical proof is an argument that deduces the statement that is meant to be proven from 

other statements that you know for sure are true 

• In direct proof, the conclusion is established by logically combining the axioms, definitions, 

and earlier theorems 

 

 

Reflection 

• What are some of the experiences (i.e., cognitive, psychomotor, and affective) I went through 

at the basic/secondary/tertiary level(s)? How have these experiences prepared me to help 

learners to apply their concepts deductive reasoning in the teaching and learning of 

mathematics?  

• How have my experiences in this training session prepared me to be a better classroom 

practitioner? Which specific examples can I draw from the course to support my position as a 

mathematics teacher? 

Discussion 

• How has this session equipped you to be a better classroom practitioner? 

• How has your idea of deduction reasoning equipped you to be a better mathematics teacher?  

• How can you contribute to achieving the aims and vision of the BSC (standards-based 

curriculum)?  

 


